博碩士論文 103022001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.198.28.114
姓名 林致遠(Chih-Yuan Lin)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用遙測影像之水深校正於東沙環礁海草棲地變遷
(Multi-Temporal Satellite Images with Bathymetry Correction For Mapping and Assessing Seagrass Bed Changes In Dongsha Atoll)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 東沙環礁國家公園位於遙遠的南海,擁有廣闊的環礁地形與底棲生物圈。近年來東沙環礁海草棲地受到劇烈的環境變化,大面積的海草消失棲地面積僅剩水沙類底棲型態。而調查水下環礁海洋資源,遙測影像具備低成本與高效率特色。光學衛星能夠長時間觀測研究區域,進而分析不同時間之棲地面積變化。
根據輻射傳播理論光譜資訊易受大氣影響及水體吸收,且太陽光輻射入水後能量隨著水深增加衰減。本研究運用紅外光波段校正各可見光波段,去除因海面不平均散射所造成眩光雜訊。大氣校正是依據理想輻射傳播理論進行暗像元去除法,另外針對研究區多雲氣候應用多尺度Retienx濾波器減少雲霧成份像元並強化邊緣。為減少多幅不同時影像輻射大氣影響和水深差異,運用白化-反白化相對校正使相同衛星影像有相同統計分佈。水深校正處理運用古典Lyzenga水深推導公式之底部反射變量,因穿透能力差異任意兩波段即可組成深度不變指數表達水下底部輻射強度資訊。
本研究影像分類只分析0到5公尺深度區域,對東沙環礁兩區的礁台深度不變指數進行最短距離分類法分成五類(海草,珊瑚,沙質,碎屑珊瑚,雲)。研究區(一)橫跨2014年夏天至2015夏天,約莫12公頃消失海草棲地僅存沙質棲地;而研究區(二)則是經歷整個2015夏天持續變遷至冬天海草棲地流失約3公頃。
目前推測東沙環礁受近年極端氣候影響,南太平洋年均海溫與1990年代上升許多東沙海溫異程現整體偏高。過去春季與東季頻繁的高溫海水使的東沙環礁海草及珊瑚等棲地生存被受挑戰。
摘要(英) In the benthic environment, seagrass was considered as the ecological stabilization index of the marine habitat. Because of the low cost and frequent observations for multispectral satellite images, they are suitable to assess seagrass habitat change. To investigate bottom material directly from spectral information, sun glint, atmospheric and water depth correction are necessary.
In this study, the sun glint and water depth correction will be conducted first to remove the surface and bathymetric effects. Meanwhile, multi Retinex with color restoration method technique which integrate Homomorphic filter and white balance enhancement are implemented. After the processes, image dynamic range is improved which achieve atoll enhancement and cloudy pixel attenuation. In Order to minimize atmospheric effect between images, relative calibration Whitening and De Whitening method is also implemented among multi-temporal image by matching target image with reference image in spectrum statically. Then, water depth correction is applied by pairs band of habitat bottom reflectance.
A huge event of seagrass disappearance has been observed in summer 2014 and 2015. Study area 1 reduced about 12 km2 within three months also found study area 2 lose 3 km2 seagrass habitat. Since most habitat and atoll attenuation condition has been changed, depth invariant index from Lyzenga equation might need recent bathymetry information. In future work, we will try to analysis satellite sea surface temperature product relationship when occur anomaly sea water and extreme weather influence at Dongsha marine resource. .
關鍵字(中) ★ 水深校正
★ 多尺度Retienx濾波器
★ 白化-反白化
★ 影像相對校正
關鍵字(英) ★ Multi Scale Retinex with color restoration
★ Depth invariant Index
★ Whitening De-whitening
論文目次 Table of Contents
摘 要...........................................i
ABSTRACT.........................................ii
Table of Contents...............................iii
List of Figure....................................v
List of Table..................................viii
Chapter 1 Mythology Review........................1
1.1 Background....................................1
1.2 Motivation....................................2
1.3 Study Area....................................3
1.4 Flow Chart....................................3
1.5 These Organization............................4
1.6 Introduction of Data..........................5
Chapter 2 Mythology..............................10
2.1 Literature Review............................10
2.2 Sun light Correction.........................11
2.3 Atmospheric Correction (I)...................11
2.4 Atmospheric Correction (II)-Multi Scale Retinex
with Color Restoration.......................13
2.5 Relative Calibration Whitening DeWhitening...14
2.6 Water depth Correction.......................16
2.7 Depth Invariant Index Correction.............16
2.8 Classification Minimum Distance Classification.18
Chapter 3 Experiment Result......................21
3.1 Sea Surface Correction Performance...........21
3.2 Atmospheric Correction (I) Performance.......22
3.3 Atmospheric Correction (II)-Multi Scale
Retinex with Color Restoration Performance...24
3.4 Relative Calibration performance.............27
3.5 Water depth correction performance...........29
3.6 Lyzenga bottom reflectance index and
Depth Invariant index comparison ................31
3.7 Classification Performance and static........35
3.8 Classification static........................36
Chapter 4 Discussion.............................41
4.1 Improvement of Landsat-8 Series Image........41
4.2 Multi Scale Retinex with Color Restoration Benefit
.............................................42
4.3 Whintening DeWhitening.......................45
4.4 Comparison of Lyzenga bottom reflectance index
and Depth invariant index....................45
4.5 Habitats Changes Detail......................47
4.6 General Habitats extinction Reason...........48
4.7 Recent Study in South China Sea..............48
4.8 Summary......................................54
Chapter 5 Conclusion.............................55
Chapter 6 Future Work............................56
Chapter 7 Reference..............................57
參考文獻 [1] Chengtao, C., Qiuyu, Z., & Yanhua, L. (2015). A survey of image dehazing approaches. In Control and Decision Conference (CCDC), 2015 27th Chinese (pp. 3964-3969). IEEE.
[2] Hedley, J. D., Harborne, A. R., & Goodman, J. A., Purkis, S. J., & Phinn, S. R. (Eds.). (2013). Coral reef remote sensing: A guide for mapping, monitoring and management. Springer Science & Business Media.
[3] Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust removal of sun glint for mapping shallow‐water benthos. International Journal of Remote Sensing, 26(10), 2107-2112.
[4] Karen Northon, 2015, 2014-warmest-year-in-modern-record, http://www.nasa.gov/press/2015/january/nasa-determines-
[5] Legleiter, C. J., Roberts, D. A., Marcus, W. A., & Fonstad, M. A. (2004). Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sensing of Environment, 93(4), 493-510.
[6] Lyons, M., Phinn, S., & Roelfsema, C. (2011). Integrating Quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007.Remote Sensing, 3(1), 42-64.
[7] Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied optics, 17(3), 379-383.
[8] Lyzenga, D. R. (1981). Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data.International journal of remote sensing, 2(1), 71-82.
[9] Lyzenga, D. R. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115-125.
[10] Maness, A. M. (2012). Acoustic and visual seabed classification of the Oculina Habitat Area of Particular Concern (OHAPC), eastern Florida shelf (Doctoral dissertation, University of North Carolina Wilmington).
[11] Mayer, R., Bucholtz, F., & Scribner, D. (2003). Object detection by using" whitening/dewhitening" to transform target signatures in multitemporal hyperspectral and multispectral imagery. , IEEE Transactions on Geoscience and Remote Sensing, 41(5), 1136-1142.
[12] Meylan, L., & Süsstrunk, S. (2006). High dynamic range image rendering with a retinex-based adaptive filter. Image Processing, IEEE Transactions on,15(9), 2820-2830.
[13] National Oceanic and Atmospheric Administration. (2015). NOAA declares third event global bleaching event. October, 2015. Active Weather Alerts.
[14] NOAA. (2015)State of the Climate: Global Analysis for November2014, National Centers for Environmental Information, published online December 2014, retrieved on June 23, 2016 from http://www.ncdc.noaa.gov/sotc/global/201413.
[15] Pamela L Reynolds, reviewed by Emmett Duffy & Nancy Knowlton, (2015). Seagrass and Seagrass Beds. Smithsonian National Museum of Natural History.
[16] Peng, Szu-Chi, (2015), Automatic Urban Road Detection from Multispectral Remote Sensing Images.
[17] Pu, R., Bell, S., & Meyer, C. (2014). Mapping and assessing seagrass bed changes in Central Florida′s west coast using multi-temporal Landsat TM imagery. Estuarine, Coastal and Shelf Science, 149, 68-79.
[18] UNEP, (2007). Modelling the Carrying Capacity of the South China Sea Marine Basin with respect to Nutrient Loading from Land-Based Sources in the context of the UNEP/GEF Project entitled: “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand”. South China Sea Knowledge Document No. 5. UNEP/GEF/SCS/Inf.5
[19] Wang,Yu-shiang, (2015), Application of multi-satellite optical image to suspended sediments monitoring - Case study of Pinan River estuary in Taiwan.
[20] Wei-Jen Liang, (2011), Color Transform Correction with Change Detection on Multispectral Remote Sensing Images.
[21] Zheng, J. W. (2012). Analysis of satellite Sea Surface Temperature data to study the influence of Dongsha region in the SCS.
[22] Zia-ur Rahman,Daniel J. Jobson, Glenn A. Woodell,“Retinex Processing for Automatic Image Enhancement,” Journal of Electronic Imaging 13(1), 100–110 (January 2004)
[23] Zuo Xiuling, Su Fenzhen, Wu Wenzhou, Chen Zhike, Shi Wei, (2015). Spatial and temporal variability of thermal stress to China′s coral reefs in South China Sea. Chinese Geographical Science, 25(2): 159–173
指導教授 任玄 審核日期 2016-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明