博碩士論文 103022601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.198.28.114
姓名 黎士俊(Tuan Sy Le)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 利用衛星雷達差分干涉法觀測越南河內市文化遺跡之地陷情形
(Monitoring Land Subsidence of Cultural Heritage Sites in Hanoi, Vietnam from Satellite Radar Interferometry Observations)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著新的合成孔徑雷達( SAR)衛星任務,合成孔徑雷達干涉測量(InSAR )已成為越來越多的研究學者的有用的技術。合成孔徑雷達技術的發展已經遠遠超出原來的範圍,涵蓋了不同的目的和學術。合成孔徑雷達圖像進行了研究生物質能測繪,冰川變遷,地表土壤之分類,特別是監測地表的變形。
此外,SAR影像和技術可用於監測文化遺蹟,歷史建築和考古的變遷。相較於傳統的監測技術,利用雷達衛星遙測技術監測文化遺址有其優缺點。在主動式的監測下,這些監測可以在晝/夜或天氣狀況。可全方位監測分析並減少或避免因災害所造成的建築物損壞情形。在另一方面,SAR影像主要的限制是在於SAR衛星影像本身和SAR處理技術的過程。目前,大多數的SAR影像不適合監測小區域或高精度的地表變形,SAR處理技術主要是監測較大的地表變形模式。
在本研究中,使用高解析度與高精度的TerraSAR-X影像。為了提高監測覆蓋率和地表變形精度,我們整合最小基線長(SB)InSAR技術與多倍取樣分析來監測SAR衛星影像之地陷情形。主要研究區域在越南河內市中心的文化遺跡。
本研究結果包含了62900000個雷達影像目標偵測點,即平均密度為217012個/平方公里。我們的研究結果顯示在影像多倍採樣的分析下,不僅增加了4.4倍的高精度雷達偵測點,並且過濾掉雜訊較多與誤差較高的偵測點。本研究區域觀測到的下陷情形與大多與相鄰的地下水開採和建設活動有關,於2012年4月至2013年11月間,本研究區最大下陷速率可達到 18.1毫米/年,一般來說,在歷史文物保存區,古蹟城堡和舊城區仍然保持在一個穩定不下陷的狀態,而那些沿著紅河和河內南部的地區則分別受到地陷的影響。
摘要(英) Recently, with the launch of new Synthetic Aperture Radar (SAR) missions, Interferometric Synthetic Aperture Radar (InSAR) has become more and more useful tool for researchers. The developments of SAR techniques have gone far beyond the original scope, covering different disciplines. SAR imagery is now used for biomass mapping, glacier tracking, landcover classification and especially monitoring the deformation of the Earth’s surface.
SAR could be used for monitoring the stability of ancient monuments, historical buildings and archaeological sectors. Compared to traditional monitoring techniques, the use of radar remote sensing for monitoring cultural heritage sites has both advantages and disadvantages. In the positive manners, those sites could be automatically monitored regardless day/night time and weather conditions. More comprehensive pictures could be potentially derived, and damages to structures could be possibly minimized or avoided. The major limitations, on the other hand, lay on the resolution of SAR imagery and SAR processing techniques. Most of current SAR sensors are not appropriate for monitoring surface displacements at a very small scale and high precision, and SAR processing techniques primarily optimize for large deformation patterns.
In this work, the X-band TerraSAR-X imagery is used for the sake of resolution and precision. To enhance the monitoring coverage and detail, we integrated the oversampling techniques to the Small Baseline (SB) InSAR for processing SAR imagery. Test site was choosen at the Historical Centre of Hanoi, Vietnam, where the relics were left by most Vietnamese dynasties in the past, greater than any other places over the country.
A total of 6.29 million radar targets were obtained, maintaining the average density of 217,012 points/km2. Our results suggest that image oversampling not only increased the number of measurement points 4.4 times more than the standard processing chain, but also removed the noisiest points. The observed subsidence patterns are mostly related to adjacent groundwater extraction and construction activities, with maximum subsiding rate reached −18.1 mm/year for the study period from April 2012 to November 2013. Generally, heritage assets and monuments in the Citadel, the Old Quarter and French Quarter remain in a steady state, whereas those located along the Red River and in southern Hanoi were subjected to subsidence.
關鍵字(中) ★ 地層下陷
★ 越南河內
★ 雷達干涉
關鍵字(英) ★ land subsidence
★ Hanoi Historical Centre
★ radar interferometry
論文目次 Abstract ii
Acknowledgment v
Chapter 1: Introduction 1
1.1 Problem statement 1
1.2 Contributions 3
1.3 Thesis roadmap 4
Chapter 2: Radar – SAR – InSAR 7
2.1 Radar 7
2.1.1 Doppler Effect 7
2.1.2 Polarization 8
2.2 Synthetic Aperture Radar (SAR) 8
2.2.1 Resolution 9
2.2.2 Signal-to-Noise Ratio 10
2.2.3 Signal Aliasing 11
2.2.4 The Doppler Centroid 12
2.3 Interferometric SAR (InSAR) 12
Chapter 3: The Historical Centre of Hanoi, Vietnam 18
3.1 Hanoi City 18
3.2 The Historical Centre of Hanoi 19
3.3 Data Availability for the Historical Centre of Hanoi 20
Chapter 4: InSAR time series analysis 27
4.1 Oversampling Implementation 28
4.2 Interferometric Processing 29
4.3 Small Baseline Time-Series Processing 31
Chapter 5: InSAR Analysis of Subsidence Patterns 35
5.1 The Citadel 36
5.2 Subsidence along the Red River Bank 38
5.3 The Old Quarter and French Quarter 38
5.4 Prevailing Subsidence Patterns 39
Chapter 6: Stability Assessments of Cultural Heritage Sites 49
6.1 The Citadel 49
6.2 Monuments on the Red River Bank 50
6.3 The Old Quarter and French Quarter 51
6.4 Prevailing Cultural Heritage Sites 52
Chapter 7: The influences of oversampling on SB InSAR processing 55
7.1 Spatial Distribution of Slowly Decorrelating Filtered Phase (SDFP) Pixels 55
7.2 The Coherence of SDFP 56
7.3 SDFP Density 57
Chapter 8: Conclusions and Future Directions 64
References 66
參考文獻 Arıkan, M., Hooper, A., & Hanssen, R. (2010). Radar time series analysis over West Anatolia: European Space Agency (Special Publication) ESA SP-677.
Benekos, G., Derdelakos, K., Bountzouklis, C., Kourkouli, P., & Parcharidis, I. (2015). Surface displacements of the 2014 Cephalonia (Greece) earthquake using high resolution SAR interferometry. Earth Science Informatics, 8(2), 309-315. doi: 10.1007/s12145-015-0205-7
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. doi: 10.1109/Tgrs.2002.803792
Brodie, G., Jacob Mohan, V., & Farrell, P. (2016). Microwave and Radio-Frequency Technologies in Agriculture, An Introduction for Agriculturalists and Engineers.
Champenois, J., Pinel, V., Baize, S., Audin, L., Jomard, H., Hooper, A., Yepes, H. (2014). Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry. Geophysical Research Letters, 41(16), 5821-5828. doi: 10.1002/2014GL060956
Chang, C. P., Wang, C. T., Chang, T. Y., Chen, K. S., Liang, L. S., Pathier, E., & Angelier, J. (2004). Application of SAR interferometry to a large thrust deformation: the 1999Mw=7.6 Chichi earthquake in central Taiwan. Geophysical Journal International, 159(1), 9-16. doi: 10.1111/j.1365-246X.2004.02385.x
Chaussard, E., Amelung, F., Abidin, H., & Hong, S. H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161. doi: 10.1016/j.rse.2012.10.015
Chen, F. L., Guo, H. D., Ishwaran, N., Zhou, W., Yang, R. X., Jing, L. H., Zeng, H. C. (2014). Synthetic Aperture Radar (SAR) Interferometry for Assessing Wenchuan Earthquake (2008) Deforestation in the Sichuan Giant Panda Site. Remote Sensing, 6(7), 6283-6299. doi: 10.3390/rs6076283
Ciampalini, A., Bardi, F., Bianchini, S., Frodella, W., Del Ventisette, C., Moretti, S., & Casagli, N. (2014). Analysis of building deformation in landslide area using multisensor PSInSAR(TM) technique. International Journal of Applied Earth Observation and Geoinformation, 33, 166-180. doi: 10.1016/j.jag.2014.05.011
Cigna, F., Lasaponara, R., Masini, N., Milillo, P., & Tapete, D. (2014). Persistent Scatterer Interferometry Processing of COSMO-SkyMed StripMap HIMAGE Time Series to Depict Deformation of the Historic Centre of Rome, Italy. Remote Sensing, 6(12), 12593-12618. doi: 10.3390/rs61212593
Crosetto, M., Monserrat, O., Cuevas-Gonzalez, M., Devanthery, N., Luzi, G., & Crippa, B. (2015). Measuring thermal expansion using X-band persistent scatterer interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 84-91. doi: 10.1016/j.isprsjprs.2014.05.006
Cumming, I. G., & Wong, F. H. (2004). Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. London, England: Artech House Remote Sensing Library.
Dang, V. K., Doubre, C., Weber, C., Gourmelen, N., & Masson, F. (2014). Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data. Natural Hazards and Earth System Sciences, 14(3), 657-674. doi: 10.5194/nhess-14-657-2014
Du, Z. Y., Ge, L. L., Li, X. J., & Ng, A. H. M. (2016). Subsidence monitoring in the Ordos basin using integrated SAR differential and time-series interferometry techniques. Remote Sensing Letters, 7(2), 180-189. doi: 10.1080/2150704X.2015.1117154
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., . . . Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2). doi: Artn Rg200410.1029/2005rg000183
Ferretti, A., Colombo, D., Fumagalli, A., Novali, F., & Rucci, A. (2015). InSAR data for monitoring land subsidence: time to think big. Proceedings of the International Association of Hydrological Sciences, 372, 331-334. doi: 10.5194/piahs-372-331-2015
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi:10.1109/36.898661
Ge, L. L., Ng, A. H. M., Li, X. J., Abidin, H. Z., & Gumilar, I. (2014). Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 154, 46-60. doi: 10.1016/j.rse.2014.08.004
Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035-4038. doi: 10.1029/1998gl900033
GSO. (2009). Report on area, population and population density in 2011 by province. Retrieved online on 2016/01/15, from http://www.gso.gov.vn/default.aspx?tabid=387&idmid=3&ItemID=12875
Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis: Springer.
Hooper, A. (2006). Persistent Scatterer radar Interferometry for crustal deformation studies and modeling of volcanic deformation. (Doctoral thesis), Stanford university.
Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16). doi: Artn L1630210.1029/2008gl034654
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514-517, 1-13. doi: 10.1016/j.tecto.2011.10.013
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7). doi: 10.1029/2006jb004763
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), doi: 10.1029/2004gl021737
Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America a-Optics Image Science and Vision, 24(9), 2737-2747. doi: 10.1364/Josaa.24.002737
Jefferies, M., ; Been, K. (2015). Soil liquefaction: a critical state approach: Crc Press.
Kampes, B., Hanssen, R. F., & Perski, Z. (2003). Radar interferometry with public domain tools. Paper presented at the Fringe, Frascati, Italy.
Ketelaar, V. B. H. (2009). Satellite Radar interferometry: Subsidence monitoring techniques: Springer.
Lanari, R., Casu, F., Manzo, M., & Lundgren, P. (2007). Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 109(1), 20-28. doi: 10.1016/j.rse.2006.12.003
Lanari, R., Lundgren, P., Manzo, M., & Casu, F. (2004). Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophysical Research Letters, 31(23. doi: 10.1029/2004gl021294
Le, T. S., & Chang, C. P. (2015). Surface deformation assessments in Hanoi, Vietnam using ALOS PALSAR interferometry. Paper presented at the The 36th Asian Conference on Remote Sensing, Manila, Philippines.
Le, T. S., Chang, C. P., Nguyen, X. T., & Yhokha, A. (2016). TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sensing, 8(4). doi: 10.3390/Rs8040338
Logan, W. (1995). Heritage planning in post-Doi Moi Hanoi: The national and international contributions. Journal of the American Planning Association, 61(3), 328-343. doi: 10.1080/01944369508975646
Lu, Z., Dzurisin, D., Biggs, J., Wicks, C., & McNutt, S. (2010). Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. Journal of Geophysical Research, 115. doi: 10.1029/2009jb006969
Luo, Q., Perissin, D., Lin, H., Zhang, Y., & Wang, W. (2014). Subsidence monitoring of Tianjin suburbs by TerraSAR-X Persistent Scatterers interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1642-1650. doi: 10.1109/jstars.2013.2271501
Martin, G. R., Finn, W. D. L., & Seed, H. B. (1974). Fundamentals of liquefaction under cyclic loading: Dept. of Civil Engineering, University of British Columbia.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature, 364(6433), 138-142. doi: 10.1038/364138a0
Mathers, S., & Zalasiewicz, J. (1999). Holocene sedimentary architecture of the Red River Delta, Vietnam. Journal of Coastal Research, 15(2), 314-325.
Ng, A. H.-M., Ge, L., & Li, X. (2015). Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sensing of Environment, 159, 86-101. doi: 10.1016/j.rse.2014.12.003
Nguyen, D. D. (1996). Geological map of Hanoi City. Hanoi: Northern Division of Planning and Investigation for Water Resources.
Nguyen, Q. T., & Helm, D. C. (1995). Land subsidence due to ground water withdrawal in Hanoi, Vietnam. Paper presented at the The Fifth International Symposium on Land Subsidence, The Hague.
Osmanoglu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102. doi: 10.1016/j.Isprsjprs.2015.10.003
Park, S.-E., Yamaguchi, Y., & Kim, D.-j. (2013). Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR. Remote Sensing of Environment, 132, 212-220. doi: 10.1016/j.rse.2013.01.018
Peltzer, G., Rosen, P., Rogez, F., & Hudnut, K. (1998). Poroelastic rebound along the Landers 1992 earthquake surface rupture. Journal of Geophysical Research, 103(B12), 30131. doi: 10.1029/98jb02302
Perissin, D., Wang, Z., & Lin, H. (2012). Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS Journal of Photogrammetry and Remote Sensing, 73, 58-67. doi: 10.1016/j.Isprsjprs.2012.07.002
Phi, T. H., & Strokova, L. A. (2015). Prediction maps of land subsidence caused by groundwater exploitation in Hanoi, Vietnam. Resource-Efficient Technologies, 1(2), 80-89. doi: 10.1016/j.reffit.2015.09.001
Prati, C., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Journal of Geodynamics, 49(3-4), 161-170. doi: 10.1016/j.jog.2009.10.011
Raucoules, D., & Carnec, C. (1999). DEM derivation and subsidence detection on Hanoi from ERS SAR Interferometry. Proceedings of 2nd International Workshop on ERS SAR Interferometry: Fringe, 99(6).
Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. doi: Doi 10.1080/13658810601169899
Richter, N., Poland, M. P., & Lundgren, P. R. (2013). TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea Volcano, Hawai‘i. Geophysical Research Letters, 40(7), 1279-1283. doi: 10.1002/grl.50286
Sladen, J. A., D′Hollander, R. D., & Krahn, J. (1985). The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, 22(4), 564-578. doi: 10.1139/t85-076
Solberg, S., Astrup, R., Gobakken, T., Næsset, E., & Weydahl, D. J. (2010). Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sensing of Environment, 114(10), 2353-2360. doi: 10.1016/j.rse.2010.05.011
Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652-2663. doi: 10.1016/j.rse.2011.05.021
Tang, P., Chen, F., Zhu, X., & Zhou, W. (2016). Monitoring Cultural Heritage Sites with Advanced Multi-Temporal InSAR Technique: The Case Study of the Summer Palace. Remote Sensing, 8(5). doi: 10.3390/rs8050432
Tapete, D., Cigna, F., & Donoghue, D. N. M. (2016). ′Looting marks′ in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sensing of Environment, 178, 42-58. doi: 10.1016/j.rse.2016.02.055
Thu, T. M., & Fredlund, D. G. (2000). Modelling subsidence in the Hanoi city area, Vietnam. Canadian Geotechnical Journal, 37(3), 621-637.
Tomiyasu, K. (1978). Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface. Proceedings of the IEEE, 66(5), 563-583. doi: 10.1109/PROC.1978.10961
Tran, V. A., Masumoto, S., Raghavan, V., & Shiono, K. (2007). Spatial distribution of subsidence in Hanoi detected by JERS-1 SAR interferometry. Geoinformatics, 18(1), 3-13. doi: 10.6010/geoinformatics.18.3
Wegmuller, U., Cordey, R. A., Werner, C., & Meadows, P. J. (2006). "Flashing fields" in nearly simultaneous ENVISAT and ERS-2 C-band SAR images. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 801-805. doi: 10.1109/Tgrs.2005.861479
Yhokha, A., Chang, C.-P., Goswami, P. K., Yen, J.-Y., & Lee, S.-I. (2015). Surface deformation in the Himalaya and adjoining piedmont zone of the Ganga Plain, Uttarakhand, India: Determined by different radar interferometric techniques. Journal of Asian Earth Sciences, 106, 119-129. doi: 10.1016/j.jseaes.2015.02.032
指導教授 張中白(Chung-Pai Chang) 審核日期 2016-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明