博碩士論文 103221601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.235.25.169
姓名 馬葵娜(Reyna Marsya Quita)  查詢紙本館藏   畢業系所 數學系
論文名稱 廣義黎曼解決方案等溫可壓縮歐拉 - 泊松方程流球對稱空間時代
(Generalized Riemann Solutions to Compressible Euler-Poisson Equations of Isothermal Flows in Spherically Symmetric Space-times)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
★ 水文地質學的平衡模型之擴散對流反應方程★ 非線性守恆律的擾動Riemann 問題的古典解
★ BBM與KdV方程初始邊界問題解的週期性★ 共振守恆律的擾動黎曼問題的古典解
★ 可壓縮流中微黏性尤拉方程激波解的行為★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性
★ 有關非線性平衡定律之柯西問題的廣域弱解★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本文中,我們考慮球對稱空間時間可壓縮歐拉方程泊松。方程,代表品質和重力吸引潛在的物理量動量守恆,可以寫成一個混合型的3x3部分迪系統的差動或平衡法與全球源2X2雙曲系統。我們展示的方程為品質守恆,歐拉 - 泊松下方程可以轉化為平衡定律與本地源純3x3的雙曲系統。歐拉 - 泊松方程黎曼問題,這是在初始邊值問題廣義Glimm方案的構建塊的通用解決方案,提供不嚴的類型相關聯的同質守恆定律弱解和擾動項解決了疊加通過與些線性雙曲系統與這種鬆懈的解決方案。最後,我們提供LAX-Wendroff無限迪方法和辛普森的數值積分為某些初始邊值問題全球資源。提供了幾種類型的初始和邊界資料的數值類比。
摘要(英) In this thesis, we consider the compressible
Euler-Poisson equations in spherically symmetric space-times. The
equations, which represent the conservation of mass and momentum
of physical quantity with attracting gravity potential, can be
written as a mixed-type $3 imes 3$ partial differential systems
or an $2 imes 2$ hyperbolic systems of balance laws with $global$
source. We show under the equation for the conservation of mass,
Euler-Poisson equations can be transformed into a pure $3 imes 3$
hyperbolic system of balance laws with $local$ source. The
generalized solutions to the Riemann problem of Euler-Poisson
equations, which is the building block of generalized Glimm scheme
for the initial-boundary value problem, are provided as the
superposition of Lax′s type weak solutions of associated
homogeneous conservation laws and the perturbation terms solved by
some linearized hyperbolic system with coefficients related to
such Lax′s solution. Finally, we provide Lax-Wendroff finite
difference method and Simpson′s numerical integration to the
global sources for some initial-boundary value problems. Numerical
simulations are provided for several types of initial and boundary
data.
關鍵字(中) ★ 可壓縮歐拉 - 泊松方程
★ 初始邊值問題
★ 弱解
★ 廣義黎曼問題
★ 寬鬆的方法
★ 線性化
關鍵字(英) ★ Compressible Euler-Poisson equations
★ initial-boundary value problem
★ weak solutions
★ generalized Riemann problem
★ Lax method
★ linearization
論文目次 1 Introduction 2
2 Re-formulation of Euler-Poisson Equations 8
3 Construction of Approximate Solution of (2.8) and (2.9) 11
4 Numerical Method and Simulations for Euler-Poisson Equations 20
4.1 The Finite Difference Method 20
4.2 The Lax-Wendroff Method 21
4.3 Numerical Simulations 22
參考文獻 [1] G.-Q. Chen, M. Slemrod, D. Wang, Vanishing viscosity method for transonic flow, Arch. Rational Mech. Anal. 189 (2008), pp. 159-188.
[2] S.W. Chou, J.M. Hong, Y.C. Su, An extension of Glimm′s method to the gas dynamical model of transonic flows, Nonlinearity 26 (2013), pp. 1581-1597.
[3] S.W. Chou, J.M. Hong, Y.C. Su, Global entropy solutions of the general non-linear hyperbolic balance laws with time-evolution flux and source, MathodsAppl. Anal., 19 (2012), pp. 43
[4] S.W. Chou, J.M. Hong, Y.C. Su, The initial-boundary value problem of hyperbolic integro-di erential systems of nonlinear balance laws, Nonlinear Anal. 75 (2012), pp. 5933-5960.
[5] C.M. Dafermos, L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J. 31 (1982), pp. 471-491.
[6] G. Dal Maso, P. LeFloch, F. Murat, De nition and weak stability of nonconservative products, J. Math. Pure Appl. 74 (1995), pp. 483-548.
[7] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math. 18 (1965), pp. 697-715.
[8] J. B. Goodman, Initial boundary value problems for hyperbolic systems of conservation laws, Thesis (Ph. D.){Stanford University., (1983).
[9] P. Goatin, P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincare-Analyse Non-lineaire 21 (2004), pp. 881-902.
[10] J. Groah, J. Smoller, B. Temple, Shock Wave Interactions in General Relativity, Monographs in Mathematics, Springer, Berlin, New York, 2007.
[11] J.M. Hong, An extension of Glimm′s method to inhomogeneous strictly hyperbolic systems of conservation laws by weaker than weak" solutions of the Riemann problem, J. Di . Equ. 222 (2006), pp. 515-549.
[12] J.M. Hong, P.G. LeFloch, A version of Glimm method based on generalized Riemann problems, J. Portugal Math. 64, (2007) pp. 199-236.
[13] J.M. Hong, B. Temple, The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws, Methods Appl. Anal. 10 (2003), pp. 279-294.
[14] J.M. Hong, B. Temple, A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math. 64 (2004), pp. 819-857.
[15] J.M. Hong, Y.-C. Su, Generalized Glimm scheme to the initial-boundary value problem of hyperbolic systems of balance laws, Nonlinear Analysis: Theory, Methods and Applications 72 (2010), pp. 635-650.
[16] E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Anal. 52 (1992), pp. 1260-1278.
[17] E. Isaacson, B. Temple, Convergence of the 2  2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55, No. 3 (1995), pp. 625-640.
[18] P.D. Lax, Hyperbolic system of conservation laws II, Commun. Pure Appl. Math. 10 (1957), pp. 537-566.
[19] P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Commun. Part. Di . Equ. 13 (1988) pp. 669-727.
[20] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, Preprint 593, 1989.
[21] P.G. LeFloch, T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math. 5 (1993), pp. 261-280.
[22] P.G. LeFloch, P.A. Raviart, Asymptotic expansion for the solution of the generalized Riemann problem, Part 1, Ann. Inst. H. Poincare, Nonlinear Analysis 5 (1988) pp. 179-209.
[23] Randall J. LeVeque, Numerical Methods for Conservation Laws, Basel, Birkhauser Verlag, 1992.
[24] T.-P. Liu, Quasilinear hyperbolic systems, Commun. Math. Phys. 68 (1979), pp. 141-172.
[25] T.-P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Commun. Math. Phys. 83 (1982), pp. 243-260.
[26] T.-P. Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987), pp. 2593-2602.
[27] M. Luskin and B. Temple, The existence of global weak solution to the nonlinear waterhammer problem, Commun. Pure Appl. Math. 35 (1982), pp. 697-735.
[28] C.S. Morawetz, On a weak solution for a transonic
ow problem, Commun. Pure Appl. Math. 38 (1985), pp. 797-817.
[29] J. Smoller, On the solution of the Riemann problem with general stepdata for an extended class of hyperbolic system, Mich. Math. J. 16, pp. 201-210.
[30] J. Smoller, Shock Waves and Reaction-Di usion Equations, 2nd ed., Springer-Verlag, Berlin, New York, 1994.
[31] B. Temple, Global solution of the Cauchy problem for a class of 22 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3 (1982), pp. 335-375.
[32] N. Tsuge, Existence of global solutions for isentropic gas
flow in a divergent nozzle with friction, J. Math. Anal. Appl. 426 (2015), pp. 971-977.
指導教授 洪盟凱(John M. Hong) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明