博碩士論文 103222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:54.224.210.130
姓名 盧玠勳(Chieh-Hsun Lu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
(Development of Pulsed Laser Deposition and Pulsed Laser Annealing to Fabricate Ge/Si Quantum Dots and Ge-on-Si Thin Film for Application to Photodetector)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 薄膜成長一直都是半導體產業的核心,目前最普遍使用的技術為化學氣相沈積(CVD)。在CVD的磊晶中,需要足夠高的成長溫度才能得到一個缺陷少及結晶性好的鍺薄膜。但高溫會產生S-K模式的成長,導致鍺薄膜表面不平整。因此本實驗採用脈衝雷射沈積(PLD)系統來沈積高品質的鍺薄膜。

在PLD磊晶的過程中,原子本身就帶有足夠的動能,使其沈積在基板後能夠移動至自由能較低的位置,使沈積的薄膜有更好的結晶性,因此PLD使用一個較低的成長溫度。此外,藉由快速高溫退火可以再進一步提升薄膜的結晶程度及減少薄膜內的缺陷。最後使用實驗室所發展的微影技術,成功地將以最佳化的磊晶、退火參數成長的樣品製做成為光偵測器,完成在本實驗室第一個使用PLD磊晶的光偵測器及其特性的量測。

另一方面,鍺/矽量子點的成長為本實驗的另一個重點。基於量子侷限效應,量子點在很多光電元件的應用上有很大的潛力,這類的應用通常需要高密度、小尺寸且均勻的量子點。為此,本實驗發展了脈衝雷射退火(PLA)技術,主要是利用一道均勻的線聚焦脈衝雷射,掃過一層預先沉積在矽基板上的鍺薄膜,以此誘發量子點的形成。PLA可以藉由調整雷射通量、移動速度以及薄膜厚度來控制量子點的大小。在適當的參數設定下,PLA可以誘發大面積、小尺寸、高密度且均勻的量子點形成。在此方法下,平均直徑約25 奈米,高度約2.9奈米,密度約每平方公分 6 1010 個的量子點,可以均勻的在大於4平方毫米的面積中生成。最後基於量子點成長趨勢與脈衝雷射參數的關係,進而提出一個雷射誘發量子點形成的機制模型。
摘要(英) Thin film deposition is always considered the heart of semiconductor industry. Nowadays, chemical vapor deposition (CVD) is widely used for this purpose. In CVD technique, a high growth temperature, normally at 600 °C, is required for the deposition of high quality Ge thin film with low threading dislocation density. However, the high growth temperature may lead to high surface roughness caused by S-K growth. Thus, pulsed laser deposition (PLD) system is used to deposit high-quality epitaxial Ge thin film on Si substrate in this work.

In PLD, the kinetic energy of Ge atoms is high enough for them to diffuse to a position where has the lowest free energy after striking substrate. This phenomenon results in a better crystallinity of the deposited thin film, and a lower growth temperature at which S-K growth mode won’t occur. To further improve the quality of Ge thin film, rapid thermal annealing (RTA) is introduced right after the deposition. Finally, a photodetector with optimized Ge thin film grown by PLD is fabricated and characterized, which is the first time in our lab.

On the other hand, the fabrication of Ge/Si quantum dots (QDs) is another issue in this work. Due to the quantum confinement effect, QDs exhibits a huge potential for a variety of applications in optoelectronic devices. For most of these applications, a large area with uniform high-density and small-size QDs is required. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin film on Si with a line-focused pulsed laser beam. This technique is also called scanning pulsed laser annealing. Moreover, the size of Ge/Si QDs can be precisely controlled by the laser fluence, laser scan speed and Ge film thickness. With suitable settings, Ge/Si QDs with a mean height of 2.9 nm, mean diameter of 25 nm, and dots density of 6 1010 cm-2 can be formed over an area larger than 4 mm2. Based on the dependences of the formation of QDs on laser parameters, a model is proposed for the mechanism underlying the laser induced formation of the Ge/Si QDs.
關鍵字(中) ★ 脈衝雷射沈積
★ 脈衝雷射退火
★ 鍺薄膜
★ 螺紋狀差排缺陷密度
★ 蝕刻斑密度
★ 量子點
★ 微影技術
★ 光偵測器
關鍵字(英) ★ pulsed laser deposition
★ pulsed laser annealing
★ Ge thin film
★ threading dislocation density
★ etch pits density
★ quantum dots
★ lithography
★ photodetector
論文目次 中文摘要 i
Abstract ii
致謝 iv
Contents v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Why Germanium? 1
1.1.1 Ge-on-Si Thin Film 2
1.1.2 Ge/Si Quantum Dots 6
1.2 Fabrication of Materials 10
1.2.1 Pulsed Laser Deposition 11
1.2.2 Film Growth Modes 13
1.3 Near-Infrared Photodetector 14
1.3.1 Device configurations 15
1.3.2 PIN Ge/Si Photodiodes 16
1.4 Motivations and Goals 18
Chapter 2 Experimental Techniques 19
2.1 Pulsed Laser Deposition 21
2.1.1 Light Source and Optics 21
2.1.2 Fluence Calculation and Deposition Rate Calculation 22
2.1.3 Target and Substrate 25
2.2 Pulsed Laser Annealing 27
2.2.1 Light Source and Optics for Annealing Beam 27
2.2.2 Laser Scan Speed and Accumulated Laser Shots 28
2.2.3 A Simple Numerical Simulation 29
2.3 Etch Pits Density Experiment 31
2.3 Photodetector Fabrication 31
2.3.1 Materials 32
2.3.2 Fabrication Procedure for Photodetector 33
2.4 Diagnostic Tools 35
2.4.1 Atomic Force Microscopy 36
2.4.2 Scanning Electron Microscopy 36
2.4.3 Raman Spectroscopy 36
2.4.4 X-Ray Diffraction 37
2.4.5 Characterization of Photodetector 38
Chapter 3 Ge-on-Si Thin Film 40
3.1 Deposition of Germanium 40
3.2 Annealing 41
3.3 Photodetectors 46
3.3.1 End Products 46
3.3.2 Performance of Photodetector 46
Chapter 4 Laser-Induced Formation of Ge/Si Quantum Dots 49
4.1 Formation of Ge/Si Quantum Dots 49
4.1.1 The Structure of Pulsed Laser-Induced Quantum Dots 51
4.1.2 Dependence on Laser Scan Speed 51
4.1.3 Dependence on Laser Peak Fluence 52
4.1.4 Dependence on Germanium Layer Thickness 54
4.1.5 Crystallinity of Quantum Dots and Ge/Si Inter-diffusion 55
4.2 Physical Model 56
4.3 Conclusion 58
Chapter 5 Summary and Perspective 59
References 61
參考文獻 [1] Jurgen Michel, Jifeng Liu, and Lionel C.Kimerling, High-performance Ge-on-Si photodetectors, Nature Photonics 4, 527 -534 (2010)
[2] V. Terzieva, L. Souriau, M. Caymax, D. P. Brunco, A. Moussa, S. Van Elshocht, R. Loo, F. Clemente, A. Satta, and Marc Meuris, Benefits and side effects of high temperature anneal used to reduce threadind dislocation detects in epitaxial Ge layers on Si substrates, Thin Solid Films 517, 172 -177 (2008)
[3] Ziheng Liu, Xiaojing Hao, Anita Ho-Baillie, Chao-yang Tsao, and Martin A. Green, Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering, Thin Solid Films 574, 99 -102 (2015)
[4] Ziheng Liu, Xiaojing Hao, Jialiang Huang, Wei Li, Anita Ho-Baillie, and Martin A. Green, Diode laser annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering, Thin Solid Films 609, 49 -52 (2016)
[5] V. Sorianello, L. Colace, M. Nardone, and G. Assanto, Thermally evaporated single-crystal germanium on silicon, Thin Solid Films 519, 8037 -8040 (2011)
[6] Jian-hong-Yang, Ying Wei, Xue-yuan Cai, and Jin-zhi Ran, The effect of threading dislocations and tensile strain in Ge/Si photodetector, Microelectronics International 27, 113 -116 (2010)
[7] Yasuhiko Ishikawa, and Kazumi Wada, Germanium for silicon photonics, Thin Solid Films 518, S83 –S87 (2010)
[8] Ajit V. Brave, Sang Jun Lee, Sam Kyu Noh, and Sanjay Krishna, Review of current progress in quantum dot infrared photodetectors, Laser & Photon Rev., 1 -13 (2009)
[9] Kang L. Wang, Fellow IEEE, Dongho Cha, Jianlin Liu, and Christopher Chen, Ge/Si self-assemble quantum dots and their optoelectronic device applications, Proceedings of IEEE 95, 1866 -1883 (2007)
[10] M. S. Hegazy, and H. E. Elsayed-Ali, Growth of Ge quantum dots on Si(100)(21) by pulsed laser deposition, Journal of Applied Physics 99, 054308 (2006)
[11] S. Watanabe, Y. Yoshida, S. Kayashima, S. Yatsu, M.Kawai, and T. Kato, In situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface, Journal of Applied Physics 108, 103510 (2010)
[12] A. Perez del Pino, E. Gyorgy, I. C. Marcus, J. Roqueta, and M. I. Alonso, Effects of pulsed laser radiation on epitaxial self-assembled Ge quantum dots grown on Si substrate, Nanotechnology 22, 295304 (2011)
[13] S. T. Huang, Light-controlled self-assembly of Ge/Si quantum dots for optoelectronic devices, Master’s thesis, National Taiwan University (2014)
[14] Gianlorenzo Masini, Lorenzo Colace, Gaetano Assanto, Hsin-Chiao Luan, and Lionel C. Kimerling, High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration, IEEE Transactions on Electron Devices 48, 1092 -1096 (2001)
[15] J. Osmond, G. Isella, D. Charstina, R. Kaufmann, M. Acciarri, and H. von Kanel, Ultralow dark current Ge/Si(100) photodiodes with low thermal budget, Applied Physics Letters 94, 201106 (2009)
[16] V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, Ettect of layer thickness on structure quality of Ge epilayers grown directly on Si(100), Thin Solid Films 519, 7911 -7917 (2011)
[17] Wenchang Yeh, Akihiro Matsumoto, Keisuke Sugihara, and Hisataka Hayase, Sputter epitaxial growth of flat germanium film with low threading-dislocation density on silicon(100), Journal of Solid State and Technology 3, Q195 –Q199 (2014)
[18] T. K. P. Luong, M. T. Dau, M. A. Zrir, M. Stoffel, V. Le Thanh, M. Petit, A. Ghrib, M. El Kurdi, P. Boucaud, H. Rinnert, and J. Murota, Control of tensile strain and interdiffusion in Ge/Si(100) epilayers grown by molecular-beam epitaxy, Journal of Applied Physics 114, 083504 (2013)
[19] H. J. Kim, and Y. H. Xie, Influence of the wetting-layer growth kinetics on the size and shape of Ge self-assembled quantum dots on Si(001), Applied Physics Latters 79, 263 -265 (2011)
[20] A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Le Thanh, and K. Berwick, Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy, Physical Review B. 73, 075322 (2006)
[21] Vinh Le Thanh, V. Yam, and P. Boucaud, Vertically self-organized Ge/Si(001) quantum dots in multilayer structures, Physical Review B 60, 5851 -5857 (1999)
[22] C. J. Park, W.-C. Yang, H. Y. Cho, Min Choul Kim, Sung Kim, and Suk-Ho Choi, Effect of Si-Spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition, Journal of Applied Physics 101, 014304 (2007)
[23] L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, Characterization of laser-generated silicon plasma, Applied Surface Science 254, 2090 -2095 (2008)
[24] Mohammed S. Hegazy, Tamer F. Refaat, M. Nurul Abedin, and H. E. Elsayed-Ali, Fabrication of Ge/Si quantum-dot infrared photodetector by pulsed laser deposition, Optical Engineering 44, 059702 (2005)
[25] A. I. Yakimov, A. V. Dvurechenki?, A. I. Nikiforov, S. V. Cha?kovski?, and S. A. Ti?s, Ge/Si photodiodes with embedded arrays of Ge quantum dots for the near infrared (1.3-1.5 μm) region, Semiconductors 37, 1345 -1349 (2003)
[26] Shuto Yamasaka, Yoshiaki Nakamura, Tomohiro Ueda, Shotaro Takeuchi, Yuta Yamamoto, Shigeo Arai, Takatoshi Tanji, Nobuo Tanaka, and Akira Sakai, Fabrication of Si thermoelectric nanomaterials containing ultrasmall epitaxial Ge nanodots with an ulreahigh density, Journal of Electronic Materials 44, 2015 -2020 (2015)
[27] Serge Luryi, Alexander Kastalsky, and John C. Bean, New infrared detector on a silicon chip. IEEE Trans. Electron. Dev. ED-31, 1135 -1139 (1984)
[28] David M. Isaacson, Carl L. Dohrman, and Eugene A. Fitzgerald, Deviations from ideal nucleation-limited relaxation in high-Ge content compositionally graded SiGe/Si, J. Vac. Sci. Technol. B 24, 2741 -2747 (2006)
[29] Mitsuru Sugawara, Self-assembled InGaAs/GaAs quantum dots, Academic Press, 1999
指導教授 陳賜原 審核日期 2017-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明