博碩士論文 103222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.140.185.147
姓名 魏榮澤(Rong-Tz Wei)  查詢紙本館藏   畢業系所 物理學系
論文名稱 雷射激發錫電漿產生極紫外光之頻譜分析
(Spectral Analysis of Extreme Ultraviolet Light from Sn Laser-Produced-Plasma)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
★ 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究★ 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源
★ 齊次平衡解析方法在求解非線性偏微分方程式的適用性分析★ 雷射電漿電子加速器之模擬研究
★ K頻段高均勻度微波材料處理系統之模擬研究與實用驗證★ 雷射電漿質子加速機制之比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 強場雷射產生的錫電漿可以激發中心波長13.5奈米的寬頻極紫外光,此光源可應用於光學同調顯像儀,由於極紫外光源具備短中心波長與寬頻的特性,可為生物細胞等相關研究提供奈米尺度的縱向解析度顯影。因此我們運用解析與模擬的方法進行雷射產生錫電漿極紫外光光譜學的研究。
本論文首先介紹穩態輻射電漿光譜模型的學理基礎與架構,此物理模型以哈特里-福克原子架構程式Cowan code為基礎,並考慮能階交互作用和相對論效應,以計算穩態錫電漿中+4到+13價錫離子內部4d-4f和4p-4d的原子能階躍遷,進而推估躍遷產生的自發輻射極紫外光光源強度與電漿不透明度所造成的再吸收效應。此模型計算得到的電漿光譜特性與實驗量測相當吻合,藉由分析Nd:YAG雷射與CO2雷射產生的電漿光譜特性,得到極紫外光源之光學同調顯像儀達到最高解析度下的雷射電漿操作條件,可以做為將來實驗之參考。
摘要(英) The broadband extreme ultraviolet (EUV) light with a central wavelength 13.5-nm can be generated by laser-produced Sn plasmas. The broadband EUV light source can be applied on optical coherence tomography (OCT) to provide images of biological cells with nanometer-scale resolution. Therefore, the theoretic analysis and numerical methods are used to study the spectrum of the laser-produced Sn plasma EUV light source.
Firstly, the fundamentals and structure of the numerical model for a steady-state plasma spectroscopy are discussed in the thesis. Based on the Hartree-Fock (HF) atomic structure code (Cowan) with the consideration of the relativistic and configuration-interaction (CI) effects, the EUV light spectrum majorly contributed by 4p-4d and 4d-4f transitions among ions of Sn V - XVI. The numerical analysis also includes the calculation of plasma emissivity and opacity. The numerical results agree well with experimental measurements. Furthermore, the parametric studies for spectral properties of Sn plasmas produced by Nd:YAG and CO2 laser are shown in the last part of the thesis. The study can provide the optimized plasma conditions to achieve the proper EUV light source for the EUV OCT.
關鍵字(中) ★ 雷射激發電漿
★ 極紫外光
★ 錫
★ 電漿光譜學
關鍵字(英) ★ laser-produced plasma
★ extreme ultraviolet
★ tin
★ plasma spectroscopy
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix

第一章 緒論 1
第二章 理論介紹 3
2.1雷射電漿的產生 3
2.2原子結構與能譜 5
2.2.1 光譜符號 6
2.2.2 耦合機制 7
2.2.3 游離能與束縛能 8
2.2.4 電子親合力 11
2.2.5 精細結構 11
2.2.6 蘭姆偏移 12
2.2.7 超精細結構 13
2.2.8 同位素偏移 14
2.3原子躍遷與游離過程 16
2.3.1 輻射躍遷 17
2.3.2 輻射再結合 22
2.3.3 碰撞激發與去激發 24
2.3.4 碰撞游離與三體再結合 26
第三章 模擬方法 28
3.1原子模擬程式 28
3.2電漿平衡模型 39
3.2.1 局部熱平衡模型 (LTE) 40
3.2.2 日冕平衡模型 (CE) 41
3.2.3 碰撞-輻射平衡模型 (CRE) 42
3.2.4 離子激發態的能階粒子密度 45
3.3光譜致寬 46
3.3.1 自然致寬 47
3.3.2 碰撞致寬 47
3.3.3 熱的都普勒致寬 47
3.4 輻射傳遞過程 48
第四章 結果與討論 50
4.1電漿平衡模型與權重振子強度 50
4.2致寬作用與能階粒子密度 52
4.3縱向解析度之電漿條件 53
4.4最佳化縱向解析度和雷射強度、電漿長度的關係 59
4.5最佳化縱向解析度和雷射強度、電漿膨脹時間的關係 62
第五章 結論與未來展望 67
參考文獻 68
附錄一 軌道-自旋耦合下的多重譜項相對強度列表 73
附錄二 Cowan code輸入檔之主能階電子組態列表 78
附錄三 符號定義表 86
附錄四 縮寫對照表 93
參考文獻 [1] V. Bakshi, “EUV Sources for Lithography, Bellingham,” Washington USA, SPIE Press, (2005).
[2] B. Alberts, et al., “Molecular biology of the cell,” 4th ed., Garland Science, (2002).
[3] Huang, et al., “Optical coherence tomography,” Science 254 (5035) 1178-1181, (1991).
[4] I. Kuznetsov, et al., “Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry”, Nature Commun. 6 (6944), (2015).
[5] Izatt J. A., et al., “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron 2 1017–1028, (1996).
[6] L. De-Pablo-Gómez-de-Liaño, et al., “Agreement Between Three Optical Coherence Tomography Devices to Assess the Insertion Distance and Thickness of Horizontal Rectus Muscles,” JPOS 54 (3) 168-176, (2017).
[7] Ying Yang, et al., “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51 (7) 1649-59, (2006).
[8] Hee M. R., et al., “Optical coherence tomography of the human retina,” Arch. Ophthalmol, 113 (3) 325-32, (1995).
[9] Hee M. R., et al., “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9 (6) 903-908, (1992).
[10] Vakoc B. J., et al., “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12 (5) 363-8, (2012).
[11] Y. Tao, et al., “Investigations on the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101 023305, (2007).
[12] S. S. Harilal, et al., “Extreme ultraviolet spectral purity and magnetic ion debris mitigation with low density tin targets,” Opt. Lett. 31 (10) 1549-1551, (2006).
[13] R. W. Coons, et al., “Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas,” Proc. of SPIE 7636 763636-1, (2010).
[14] S. Fuchs, et al., “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys B 106 (4), 789–795, (2012).
[15] S. Fuchs, et al., “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Scientific Reports 6 20658, (2016).
[16] Sansone, G., et al., “High-energy attosecond light sources,” Nature Photon 11 655–663, (2011).
[17] Popmintchev, T., et al., “The attosecond nonlinear optics of bright coherent X-ray generation,” Nature Photon 4 822–832, (2010).
[18] V. Sizyuk, et al., “Three-dimensional simulation of laser produced plasma for extreme ultraviolet lithography applications,” Journal of applied physics 100 (10) 103106, (2006).
[19] K. Nishihara, et al., “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Physics of Plasmas 15 (5), 056708, (2008).
[20] J. Abdallah Jr., R. E. H. Clark, and R. D. Cowan, “Theoretical Atomic Physics Code Development I CATS: Cowan Atomic Structure Code,” Los Alamos National Laboratory, (Dec. 1988).
[21] R. D. Cowan, “The theory of atomic structure and spectra,” vol. 3. Univ. of California Press, (1981).
[22] H. Kinoshita, et al., “Soft x-ray reduction lithography using multilayer mirrors,” J. Vac. Sci. Technol. B7 1648–1651, (1989).
[23] G. D. Kubiak, et al., “Debris-free EUVL sources based on gas jets,” OSA trends in Optics and Photonics 4 in Extreme Ultraviolet Lithography,” D. Kubiak and D. R. Kania, Eds., OSA 66–71, (1996).
[24] T. Aota, et al., “Use of tin as a plasma source material for high conversion efficiency,” Proc. SPIE 5037 147-155, (2003).
[25] J. R. Hoffman, et al., “LPP EUV conversion efficiency optimization,” Proc. SPIE 5751 892, (2005).
[26] M. Vandevraye, C. Drag, and C. Blondel, “Electron affinity of tin measured by photodetachment microscopy,” J. Phys. B 46 (12) 125002, (2013).
[27] A. R. P. Rau, “The quantum defect: Early history and recent developments,” Am. J. Phys. 65 (3), (1997).
[28]  D. J. Hughes and C. Eckart, “The Effect of the Motion of the Nucleus on the Spectra of Li I and Li II,” Phys. Rev. 36, 694–698, (1930).
[29] H. Schüler and H. Brück, “Über Hyperfeinstrukturen und Kernmomente,” Zeits. f. Physik 58 741, (1929).
[30]  J. E. Mack and Hack Arroec,“Isotope Shift in Atomic Spectra,” Annu. Rev. Nucl. Sci. 6, 117-128, (1956).
[31]  J. Meija, et al., “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88 (3) 265–291, (2016).
[32]  D. R. Lide, “CRC Handbook of Chemistry and Physics,” CRC Press, (2002).
[33]  D. N. Stacey, “Isotope shift and hyper fine structure in the spectrum of tin,” Proc. Royal Soc. A 280 (1382) 439-446, (1964).
[34] R. M. More, et al., “Semiclassical calculation of oscillator-strengths,” Journal de Physique 50 (1) 35-44, (1989)
[35] I. C. E. Turcu and J. B. Dance, “X-Rays from Laser Plasmas:Generation and Applications,” John Wiley & Sons Ltd., (1999).
[36] Ella Sciamma-O’Brien. Plasma spectroscopic diagnostic tool using collisional-radiative models and its application to different plasma discharges for electron temperature and neutral density determination (Unpublished Doctoral dissertation). The University of Texas at Austin, (2007).
[37] D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasma,” J. Appl. Phys. 44 (8), (1973).
[38] N. Itoh, "A membrane reactor using palladium," AIChE Journal 33 (9) 1576-1578, (1987).
[39] Po-Yen Lai, Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source. National Central University at Taiwan, (2016).
[40] G. Wertheim, M. Butler, K. West, and D. Buchanan, “Determination of the Gaussian and Lorentzian content of experimental line shapes,” Review of Scientific Instruments 45 (11), pp. 1369-1371, (1974).
[41] Y. Y. Li, et al., “Interferometry Based EUV Spectrometer,” IEEE Photonics Journal 9 (4), (2017).
[42] J. White, Opening the extreme ultraviolet lithography source bottleneck Developing a 13.5-nm laser-produced plasma source for the semiconductor industry. University Collage Dublin, (2006).
[43] V. Y. Banine, et al., “Physical processes in EUV sources for microlithography,” J. Phys. D 44 (25), (2011).
[44] A. N. Cox, et al., “Astrophysical Quantities,” 4th ed., American Institute of Physics Press, (1996).
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2017-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明