博碩士論文 103222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:13.58.82.79
姓名 劉彥伯(Yen-Po Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為
(Behaviors of Low-Frequency Electrical Noise in MoS2 and WS2 Field-Effect Transistors)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 單一超導量子位元控制與狀態讀取★ 超導量子干涉元件製作
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們研究化學沉積法成長的單層二硫化鎢(WS2)和二
硫化鉬(MoS2)場效電晶體元件的電子傳輸特性與低頻雜訊表現。我們測量單層二硫化鎢和二硫化鉬的電流-電壓曲線得知兩材料皆為N型半導體,同時也由此計算出材料的電子遷移率。單層二硫化鎢和二硫化鉬的電子遷移率分別為1-2 cm2/Vs和30-40 cm2/Vs。單層二硫化鎢電晶體的低頻雜訊行為和在高電子濃度(大於3 × 1013 cm-2)下單層二硫化鉬電晶體的低頻雜訊表現。
低頻雜訊強度與電子濃度的關係可以判斷1/f 雜訊是來自電荷數目
的擾動還是電荷遷移率的擾動。低頻雜訊強度與電子濃度的關係是找出
1/f 雜訊的電流擾動的來源的重要課題。在我們的工作中發現,單層二硫化鎢電晶體的1/f 雜訊雖然γ=1.5不符合Hooge empirical low,但雜訊表現可以判斷此1/f 雜訊可能是源自於電荷遷移率擾動,而單層二硫化鉬電晶體在高電子濃度下的1/f 雜訊是源自於電荷數目的擾動。
摘要(英) In this thesis, we study electrical transport properties and low frequency noise behaviors on chemical-vapor-deposition (CVD) monolayer WS2 and MoS2 FETs devices. We measure the transfer function and the IV characteristics, and N-type semiconducting behaviors of both WS2 and MoS2
are also obtained. The mobility of single-layered WS2 and MoS2 are 1-2 cm2/Vs and 30-40 cm2/Vs, respectively. Moreover, the low-frequency noise behavior of monolayer WS2 FETs is investigated, and low frequency noise performance in high carrier density (above 3 × 1013 cm-2) of monolayer MoS2 FETs is discussed in Chapter 3.
Carrier density dependence of low frequency electrical noise is a way to determine whether the 1/f noise is dominated by fluctuations in carrier number or carrier mobility. Carrier density dependence is an important topic to characterize the source of electrical current fluctuation forming 1/f noise out. Our experimental results show that 1/f noise of CVD single-layer WS2 FETs is dominated by fluctuation of carrier mobility, although γ=1.5 of this WS2 1/f noise deviates from Hooge empirical law, and 1/f noise of CVD single-layer MoS2 FETs at high carrier density regime is dominated by fluctuation of carrier number.
關鍵字(中) ★ 1/f 雜訊
★ 低頻雜訊
★ 過渡金屬硫屬化合物
★ 二維材料
★ 二硫化鉬
★ 二硫化鎢
關鍵字(英) ★ 1/f noise
★ Low-frequency noise
★ Transition metal dichalcogenides
★ 2D material
★ MoS2
★ WS2
論文目次 目錄Contents
Ab s t r a c t …………………………………………………………………………………………………………………I
中文摘要……………………………………………………………………………………………………………………………………II
誌謝…………………………………………………………………………………………………………………………………………III
目錄Contents………………………………………………………………………………………………………………………IV
圖目錄List of Figures………………………………………………………………………………………………VI
表目錄List of Tables…………………………………………………………………………………………………XI
Chapter 1 Introduction to 1/f Noise in Semiconducting TMDs…………………………………1
1.1 Electrical Current Fluctuation at Low Frequency…………………………………………………1
1.1.1 The Hooge Empir ical Law…………………………………………………………………………3
1.1.2 Random Telegraph Noise and Models of 1/f noise…………………………3
1.1.3 The McWhorter Model and the Hooge Model…………………………………5
1.2 Introduction to TMDs…………………………………………………………………………………………9
1.3 Low-Frequency Electronic Noise in TMDs Transistors……………………………15
Chapter 2 Experimental Methods………………………………………………………………………19
2.1 Device Fabrication……………………………………………………………………………………………19
2.1.1 Electron Beam Lithography……………………………………………………………………20
2.1.2 Device Introduction……………………………………………………………………………………22
2.2 Ohmic Contact…………………………………………………………………………………………………………23
2.2.1 Heater Annealing……………………………………………………………………………………………25
2.2.2 High Current Annealing……………………………………………………………………………26
2.3 Measurement Setup………………………………………………………………………………………………27
2.3.1 Instrument Setup……………………………………………………………………………………………27
2.3.2 Instrument List………………………………………………………………………………………………28
2.3.3 Repeal the 60Hz Noise………………………………………………………………………………30
Chapter 3 Result of Experiment………………………………………………………………………31
3.1 Experimental Result of WS2………………………………………………………………………31
3.1.1 Optical characterizations of WS2…………………………………………………31
3.1.2 Transport Characteristic of WS2……………………………………………………32
3.1.3 Low-frequency noise behavior of WS2 FETs……………………………33
3.1.4 Carrier Density Dependence in WS2 FETs…………………………………35
3.2 Experimental Result of MoS2……………………………………………………………………37
3.2.1 Optical characterizations of MoS2………………………………………………37
3.2.2 Transport Characteristic of MoS2…………………………………………………38
3.2.3 Low-frequency noise behavior of MoS2 FETs…………………………40
3.2.4 Carrier Density Dependence in MoS2 FETs………………………………42
Chapter 4 Conclusion and Future Work ……………………………………………………45
References……………………………………………………………………………………………………………………………47
參考文獻 Reference
[1] Dutta, P. and Horn, P. (1981). Low-frequency fluctuations in solids: 1/f noise. Reviews
of Modern Physics, 53(3), pp.497-516.
[2] Hooge, F. (1969). 1/? noise is no surface effect. Physics Letters A, 29(3), pp.139-140.
[3] Weissman, M. (1988). 1/f noise and other slow, nonexponential kinetics in condensed
matter. Reviews of Modern Physics, 60(2), pp.537-571.
[4] Balandin, A. (2013). Low-frequency 1/f noise in graphene devices. Nature
Nanotechnology, 8(8), pp.549-555.
[5] Sangwan, V., Arnold, H., Jariwala, D., Marks, T., Lauhon, L. and Hersam, M. (2013).
Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Letters,
13(9), pp.4351-4355.
[6] Ghatak, S., Mukherjee, S., Jain, M., Sarma, D. and Ghosh, A. (2014). Microscopic
origin of low frequency noise in MoS2 field-effect transistors. APL Materials, 2(9),
p.092515.
[7] Renteria, J., Samnakay, R., Rumyantsev, S., Jiang, C., Goli, P., Shur, M. and Balandin,
A. (2014). Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the
channel and contacts. Applied Physics Letters, 104(15), p.153104.
[8] Sharma, D., Amani, M., Motayed, A., Shah, P., Birdwell, A., Najmaei, S., Ajayan, P.,
Lou, J., Dubey, M., Li, Q. and Davydov, A. (2014). Electrical transport and
low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Nanotechnology, 25(15), p.155702.
48
[9] Cho, I., Kim, J., Hong, Y., Roh, J., Shin, H., Baek, G., Lee, C., Hong, B., Jin, S. and
Lee, J. (2015). Low frequency noise characteristics in multilayer WSe2 field effect
transistor. Applied Physics Letters, 106(2), p.023504.
[10] Chen, C. (2010). Low frequency noise in advanced CMOS technology. Doctor of
philosophy. Stanford University.
[11] McWhorter, A., Meyer, J. and Strum, P. (1957). Noise Temperature Measurement on a
Solid State Maser. Physical Review, 108(6), pp.1642-1644.
[12] F.N. Hooge, T.G.M. Kleinpenning and L.K.J. Vandamme. (1981). Experimental
studies on 1/f noise, Rep. Prog. Phys. 44, 479-531.
[13] Vandamme, L. and Hooge, F. (2008). What Do We Certainly Know About 1/f Noise in
MOSTs?. IEEE Transactions on Electron Devices, 55(11), pp.3070-3085.
[14] Lee, G., Yu, Y., Cui, X., Petrone, N., Lee, C., Choi, M., Lee, D., Lee, C., Yoo, W.,
Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P. and Hone, J. (2013). Flexible and
Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene
Heterostructures. ACS Nano, 7(9), pp.7931-7936.
[15] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C., Galli, G. and Wang, F.
(2010). Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10(4),
pp.1271-1275.
[16] Mak, K., Lee, C., Hone, J., Shan, J. and Heinz, T. (2010). Atomically Thin MoS2 : A
New Direct-Gap Semiconductor. Physical Review Letters, 105(13).
[17] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011).
Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), pp.147-150.
49
[18] Radisavljevic, B. and Kis, A. (2013). Mobility engineering and a metal–insulator
transition in monolayer MoS2. Nature Materials, 12(9), pp.815-820.
[19] Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J. and Strano, M. (2012). Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides. Nature
Nanotechnology, 7(11), pp.699-712.
[20] Jariwala, D., Sangwan, V., Lauhon, L., Marks, T. and Hersam, M. (2014). Emerging
Device Applications for Semiconducting Two-Dimensional Transition Metal
Dichalcogenides. ACS Nano, 8(2), pp.1102-1120.
[21] Late, D., Huang, Y., Liu, B., Acharya, J., Shirodkar, S., Luo, J., Yan, A., Charles, D.,
Waghmare, U., Dravid, V. and Rao, C. (2013). Sensing Behavior of Atomically
Thin-Layered MoS2 Transistors. ACS Nano, 7(6), pp.4879-4891.
[22] Baugher, B., Churchill, H., Yang, Y. and Jarillo-Herrero, P. (2014). Optoelectronic
devices based on electrically tunable p–n diodes in a monolayer
dichalcogenide. Nature Nanotechnology, 9(4), pp.262-267.
[23] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. and Kis, A. (2013).
Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 8(7),
pp.497-501.
[24] Zeng, H., Dai, J., Yao, W., Xiao, D. and Cui, X. (2012). Valley polarization in MoS2
monolayers by optical pumping. Nature Nanotechnology, 7(8), pp.490-493.
[25] Mak, K., He, K., Shan, J. and Heinz, T. (2012). Control of valley polarization in
monolayer MoS2 by optical helicity. Nature Nanotechnology, 7(8), pp.494-498.
50
[26] Xiao, D., Liu, G., Feng, W., Xu, X. and Yao, W. (2012). Coupled Spin and Valley
Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical
Review Letters, 108(19).
[27] Li, H., Zhang, Q., Yap, C., Tay, B., Edwin, T., Olivier, A. and Baillargeat, D. (2012).
From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional
Materials, 22(7), pp.1385-1390.
[28] Liu, K., Zhang, W., Lee, Y., Lin, Y., Chang, M., Su, C., Chang, C., Li, H., Shi, Y.,
Zhang, H., Lai, C. and Li, L. (2012). Growth of Large-Area and Highly Crystalline
MoS2 Thin Layers on Insulating Substrates. Nano Letters, 12(3), pp.1538-1544.
[29] Schmidt, H., Wang, S., Chu, L., Toh, M., Kumar, R., Zhao, W., Castro Neto, A.,
Martin, J., Adam, S., O zyilmaz, B. and Eda, G. (2014). Transport Properties of
Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Letters, 14(4),
pp.1909-1913.
[30] Allain, A., Kang, J., Banerjee, K. and Kis, A. (2015). Electrical contacts to
two-dimensional semiconductors. Nature Materials, 14(12), pp.1195-1205.
[31] Ovchinnikov, D., Allain, A., Huang, Y., Dumcenco, D. and Kis, A. (2014). Electrical
Transport Properties of Single-Layer WS2. ACS Nano, 8(8), pp.8174-8181.
[32] Sharma, D., Motayed, A., Shah, P., Amani, M., Georgieva, M., Glen Birdwell, A.,
Dubey, M., Li, Q. and Davydov, A. (2015). Transfer characteristics and low-frequency
noise in single- and multi-layer MoS2 field-effect transistors. Applied Physics Letters,
107(16), p.162102.
51
[33] van der Zande, A., Huang, P., Chenet, D., Berkelbach, T., You, Y., Lee, G., Heinz, T.,
Reichman, D., Muller, D. and Hone, J. (2013). Grains and grain boundaries in highly
crystalline monolayer molybdenum disulphide. Nature Materials, 12(6), pp.554-561.
[34] Na, J., Joo, M., Shin, M., Huh, J., Kim, J., Piao, M., Jin, J., Jang, H., Choi, H., Shim, J.
and Kim, G. (2014). Low-frequency noise in multilayer MoS2 field-effect transistors:
the effect of high-k passivation. Nanoscale, 6(1), pp.433-441.
[35] Wang, Y., Luo, X., Zhang, N., Laskar, M., Ma, L., Wu, Y., Rajan, S. and Lu, W.
(2013). Low frequency noise in chemical vapor deposited MoS2. 82nd ARFTG
Microwave Measurement Conference.
[36] Lee, Y., Zhang, X., Zhang, W., Chang, M., Lin, C., Chang, K., Yu, Y., Wang, J.,
Chang, C., Li, L. and Lin, T. (2012). Synthesis of Large-Area MoS2 Atomic Layers
with Chemical Vapor Deposition. Advanced Materials, 24(17), pp.2320-2325.
[37] Chu, L., Schmidt, H., Pu, J., Wang, S., O zyilmaz, B., Takenobu, T. and Eda, G. (2014).
Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors.
Scientific Reports, 4, p.7293.
[38] Kang, J., Liu, W. and Banerjee, K. (2014). High-performance MoS2 transistors with
low-resistance molybdenum contacts. Applied Physics Letters, 104(9), p.093106.
[39] Yuan, H., Cheng, G., You, L., Li, H., Zhu, H., Li, W., Kopanski, J., Obeng, Y., Hight
Walker, A., Gundlach, D., Richter, C., Ioannou, D. and Li, Q. (2015). Influence of
Metal–MoS2Interface on MoS2 Transistor Performance: Comparison of Ag and Ti
Contacts. ACS Applied Materials & Interfaces, 7(2), pp.1180-1187.
52
[40] Liu, Y., Wu, H., Cheng, H., Yang, S., Zhu, E., He, Q., Ding, M., Li, D., Guo, J.,
Weiss, N., Huang, Y. and Duan, X. (2015). Toward Barrier Free Contact to
Molybdenum Disulfide Using Graphene Electrodes. Nano Letters, 15(5),
pp.3030-3034.
[41] Tongay, S., Zhou, J., Ataca, C., Liu, J., Kang, J., Matthews, T., You, L., Li, J.,
Grossman, J. and Wu, J. (2013). Broad-Range Modulation of Light Emission in
Two-Dimensional Semiconductors by Molecular Physisorption Gating. Nano Letters,
13(6), pp.2831-2836.
[42] Manual of SR570, Stanford Research Systems
[43] Berkdemir, A., Gutierrez, H., Botello-Mendez, A., Perea-Lopez, N., Elias, A., Chia,
C., Wang, B., Crespi, V., Lopez-Urias, F., Charlier, J., Terrones, H. and Terrones, M.
(2013). Identification of individual and few layers of WS2 using Raman Spectroscopy.
Scientific Reports, 3.
[44] Yen-Po Liu, Ji-Wun Wang, Bo-Han Chen, Meng-Hsi Chuang, Dah-Chin Ling,
Jeng-Chung Chen, Yi-Hsien Lee, Yung-Fu Chen. (2016). Low Frequency Electrical
Noise in Chemical Vapor Deposited WS2. In preparation.
[45] Liu, L., Kumar, S., Ouyang, Y. and Guo, J. (2011). Performance Limits of Monolayer
Transition Metal Dichalcogenide Transistors. IEEE Transactions on Electron Devices,
58(9), pp.3042-3047.
53
[46] Xiao, D., Liu, G., Feng, W., Xu, X. and Yao, W. (2012). Coupled Spin and Valley
Physics in Monolayers ofMoS2and Other Group-VI Dichalcogenides. Physical Review
Letters, 108(19).
[47] Arnold, H., Sangwan, V., Schmucker, S., Cress, C., Luck, K., Friedman, A., Robinson,
J., Marks, T. and Hersam, M. (2016). Reducing flicker noise in chemical vapor
deposition graphene field-effect transistors. Applied Physics Letters, 108(7), p.073108.
[48] Lee, Y., Yu, L., Wang, H., Fang, W., Ling, X., Shi, Y., Lin, C., Huang, J., Chang, M.,
Chang, C., Dresselhaus, M., Palacios, T., Li, L. and Kong, J. (2013). Synthesis and
Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano
Letters, 13(4), pp.1852-1857.
[49] Baugher, B., Churchill, H., Yang, Y. and Jarillo-Herrero, P. (2013). Intrinsic
Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano
Letters, 13(9), pp.4212-4216.
[50] Radisavljevic, B. and Kis, A. (2013). Mobility engineering and a metal–insulator
transition in monolayer MoS2. Nature Materials, 12(9), pp.815-820.
[51] Kettner, M., Vladimirov, I., Strudwick, A., Schwab, M. and Weitz, R. (2015). Ionic
gel as gate dielectric for the easy characterization of graphene and polymer field-effect
transistors and electrochemical resistance modification of graphene. Journal of
Applied Physics, 118(2), p.025501.
[52] Lembke, D. and Kis, A. (2012). Breakdown of High-Performance Monolayer MoS2
Transistors. ACS Nano, 6(11), pp.10070-10075.
54
[53] Ji-Wun Wang, Yen-Po Liu, Bo-Han Chen, Meng-Hsi Chuang, Dah-Chin Ling,
Jeng-Chung Chen, Yung-Fu Chen, Yi-Hsien Lee. (2016). Controled low-frequency
noise of monolayer MoS2 with ohmic contact and tunable carrier concentration. In
preparation.
指導教授 陳永富(Yung-Fu Chen) 審核日期 2017-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明