博碩士論文 103222018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.119.135.63
姓名 卿家豪(Jia-Hau Ching)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Hele-Shaw cell中的密度差對流現象
(Density-driven convection in Hele-Shaw cell)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 經由碳封存技術的啟發,本實驗為一組Hele-Shaw cell裝置類比二氧化碳在地下水層的對流現象。簡述孔隙介質流與類二維流體之間的關係及前人文獻的結果後,依此架設裝置及流體系統。在過錳酸鉀(KMnO4)粒子與水的交互作用下,清楚觀測到指頭狀對流的動態過程,並加以定性上的描述。我們分析指狀流在控制滲透率下的行為,此包括粗粒化過程、對流起始時間、指狀流平均距離,及溶解速率,此參數範圍相當於模擬雷利數(Ra) 2×〖10〗^4 ~ 8.26×〖10〗^6下的流體行為。透過計算努塞爾特數(Nu)得出,在此Ra區間,溶質的溶解速率不因Ra的改變有顯著的變化。
摘要(英) Inspired by the flow process of carbon capture and storage(CCS) technology in saline structure, we set up an analogy fluid system in homogeneous porous media to mimic the supercritical ce{CO2} mixing dynamics with brine. Before getting into the details of the experiment, the theoretical background and previous works are presented first, and then the experimental setup of Hele-Shaw cell is shown. By observing the convective flow due to dissolution, the description of mixing dynamics is given. We also examine the coarsening process, onset time of convection, wavelength of fingers, and the rate of dissolution with Ra the Rayleigh number which is in the range of $2 imes 10^{4} leq Ra leq 8.26 imes 10^{6}$. Through calculating Nusselt number, $Nu$, the dimensionless convective flux, which is expected to predict the dissolution process, we find that the dissolution flux is not influenced significantly in this range of $Ra$ number. The result implies the geometrical structure plays a minor role in high $Ra$ for convective dissolution.
關鍵字(中) ★ 密度差對流
★ 雷利數
關鍵字(英) ★ Density-driven convection
★ Hele-Shaw cell
★ Rayleigh number
★ Nusselt number
論文目次 Contents
Abstract i
Acknowledgements ii
List of Figures iv
1 Introduction 1
2 Background knowledge and previous works 3
2.1 Porous media flow . . . . . . . . . . . . . . . 3
2.1.1 Porosity . . . . . . . . . . . . . . . . . . . 4
2.1.2 Darcy′s law and permeability . . . . . . . . . 5
2.1.3 Hele-Shaw flow . . . . . . . . . . . . . . . . 6
2.2 Rayleigh-Taylor instability .. . . . . . . . . . 8
2.2.1 Dimensionless number . . . . . . . . . . . . . 9
2.3 Previous work about convection .. . . . . . . . 10
3 Experimental setup 12
3.1 Hele-Shaw cell and fluid systems .. . . . . . . 12
3.2 Calibration of concentration . . . . . . . . . 13
4 Results and Discussion 23
4.1 Qualitative description of convective dynamics. . 23
4.2 Coarsening process . . . . . . . . . . . . 24
4.2.1 Wavelength evolution . . . . . . . . . . 27
4.3 Dissolved KMnO4 mass flux. . . . . . . . . 28
4.4 Convective dimensionless flux in Ra . . . 29
5 Conclusion 41
Appendix 42
Bibliography 43
參考文獻 [1] O. Sohnel and P. Novotny. Densities of aqueous solutions of inorganic sub-
stances, volume 22. Elsevier Publishing Company, 1985.
[2] Guenter Ahlers, Siegfried Grossmann, and Detlef Lohse. Heat transfer and
large scale dynamics in turbulent rayleigh-benard convection. Rev. Mod.
Phys., 81(2):503, 2009.
[3] Susan Solomon, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein.
Irreversible climate change due to carbon dioxide emissions. Proceedings
of the national academy of sciences, pages pnas{0812721106, 2009.
[4] B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, et al. IPCC Special
Report On Carbon Dioxide Capture and Storage. Cambridge university press,
2005.
[5] A. Rucci, D. W. Vasco, and F. Novali. Monitoring the geologic storage of
carbon dioxide using multicomponent sar interferometry. Geophys. J. Int.,
193(1):197{208, 2013.
[6] R. Korbl and A. Kaddour. Sleipner vest CO2 disposal-injection of removed
CO2 into the utsira formation. Energy Convers. Manage., 36(6):509{512,
1995.
[7] FC Boait, NJ White, MJ Bickle, RA Chadwick, JA Neufeld, and HE Huppert.
Spatial and temporal evolution of injected co2 at the sleipner eld, north sea.
Journal of Geophysical Research: Solid Earth, 117(B3), 2012.
[8] A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr. Onset of convection in a
gravitationally unstable di usive boundary layer in porous media. J. Fluid
Mech., 548:87{111, 2006.
[9] J. Bear. Dynamics of Fluids in Porous Media. 1972.
[10] T. E. Faber. Fluid Dynamics for Physicists. Cambridge University Press,
1995. doi: 10.1017/CBO9780511806735.
[11] Hamid Emami Meybodi and Hassan Hassanzadeh. Stability analysis of twophase
buoyancy-driven
ow in the presence of a capillary transition zone.
Physical Review E, 87(3):033009, 2013.
[12] A. C. Slim and T. S. Ramakrishnan. Onset and cessation of time-dependent,
dissolution-driven convection in porous media. Phys. Fluids, 22(12):124103,
2010.
[13] J. J. Hidalgo, J. Fe, L. Cueto-Felgueroso, and R. Juanes. Scaling of convective
mixing in porous media. Phys. Rev. Lett., 109(26):264503, 2012.
[14] A. C. Slim. Solutal-convection regimes in a two-dimensional porous medium.
J. Fluid Mech., 741:461{491, 2014.
[15] G. S.H. Pau, J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, and
K. Zhang. High-resolution simulation and characterization of density-driven

ow in CO2 storage in saline aquifers. Adv. Water Resour., 33(4):443{455,
2010.
[16] J. A. Neufeld, M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi, and
H. E. Huppert. Convective dissolution of carbon dioxide in saline aquifers.
Geophys. Res. Lett., 37(22), 2010.
[17] H. E. Huppert and J. A. Neufeld. The
uid mechanics of carbon dioxide
sequestration. Annu. Rev. Fluid Mech., 46:255{272, 2014.
[18] M. L. Szulczewski, M. A. Hesse, and R. Juanes. Carbon dioxide dissolution
in structural and stratigraphic traps. J. Fluid Mech., 736:287{315, 2013.
[19] S. Backhaus, K. Turitsyn, and R. E. Ecke. Convective instability and mass
transport of di usion layers in a hele-shaw geometry. Phys. Rev. Lett., 106
(10):104501, 2011.
[20] P. A. Tsai, K. Riesing, and H. A. Stone. Density-driven convection enhanced
by an inclined boundary: Implications for geological CO2 storage. Phys Rev
E Rapid, 87(1):011003(R), 2013.
[21] A. C. Slim, M. M. Bandi, J. C. Miller, and L. Mahadevan. Dissolution-driven
convection in a hele-shaw cell. Phys. Fluids, 25(2):024101, 2013.
[22] J. Garcia. Fluid dynamics of carbon dioxide disposal into saline aquifers,
2003.
[23] A. Riaz and Y. Cinar. Carbon dioxide sequestration in saline formations:
Part i|review of the modeling of solubility trapping. J. Pet. Sci. Technol.,
124:367{380, 2014.
[24] R. E. Ecke and S. Backhaus. Plume dynamics in hele-shaw porous media
convection. Phil. Trans. R. Soc. A, 374(2078):20150420, 2016.
指導教授 陳培亮 Peichun Amy Tsai(Peilong Chen Peichun Amy Tsai) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明