博碩士論文 103222020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:54.81.220.239
姓名 蔡俊毅(Jun-Yi Tsai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微粒電漿缺陷紊波波型與缺陷演變之微觀動力行為
(Lagrangian-Eulerian micro-dynamics of waveform and defect evolution in defect-mediated dust acoustic wave turbulenc)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在非線性耗散系統中,聲波型態的規則波形可自發性產生。若增加系統功率,會使調製不穩定性增加,造成規則波變得些微不規則,也造成功率頻譜上主頻率與其諧頻峰值加寬。在二維系統中,缺陷介導紊波為不規則平面波伴隨缺陷出現在叉型波的交會點上,該處波振幅為零且相位無法定義。微觀下,疏密縱波如電漿與氣體中的聲波由縱向運動的粒子組成。波與粒子間交互作用使波形影響粒子運動,而粒子運動反過來又決定了波形演化。盡管如此,粒子運動在上述的不穩定波中,如何影響波形與缺陷演變的通則仍是尚未被解決的基礎議題。
上述未探討之議題在此研究中,藉由實驗上觀測微粒電漿系統產生自發性的微粒電漿紊流波,直接追蹤微粒運動與波形演變並建立清楚的波-粒子動力行為圖像。實驗結果發現,局部的粒子在波峰前堆積與波峰後耗散行為,影響該局部區域之波移動速度、波高增減與波形演變。此外也發現,影響粒子在二維上堆疊與耗散主因──波峰越高波移動速度越快、粒子聚散特性藉由受力方向由高至低密度與非均勻波高的不整齊波導致。以上發現可解釋觀測到的叉型波與缺陷演化。隨著叉型波移動的移動座標觀測,叉型波中,前方的微彎的波峰被拉直且伴隨著缺陷朝著叉型波開口方向的運動。緊接著後方緩慢移動的波峰因為強烈的彎曲而與前方波斷開連結。這斷開連結的單一波峰隨後會因頂點的耗散場而造成重新與尾隨的波峰重新連結而形成新的叉型波。
摘要(英) An acoustic type wave can be self-excited in the nonlinear dissipative system with the ordered waveform. Increasing the power of the system, the ordered wave becomes weakly disordered, and the sharp spikes in power spectrum are broadened through the modulation instability. In a 2D system, a weakly disordered plane wave is accompanied with the emergence of defects at the vertices of pitchfork shape waveforms, where the amplitudes are null and the phases are undefined. It leads to the name of defect mediated turbulence. Microscopically, longitudinal density waves such as acoustic type waves in plasmas and gases are constituted by particles exhibiting longitudinal motion. Particle motions are affected by the waveform through wave-particle
interactions, which in turn determines waveform evolution. Nevertheless, the generic behaviors of how particles move in the above unstable wave, which affect waveform and defect evolutions are still fundamental unexplored issues.
In this work, a clear Lagrangian-Eulerian wave-particle dynamic picture is constructed for the above unexplored issues experimentally in a weakly disordered self-excited dust acoustic wave in a rf dusty plasma system, by direct tracking dust particle motion and waveform evolution. It is found that local accumulation and depletion of particles in the wave front and rear, respectively, affects the local crest propagation speed, and the growth and decay of the local crest height, which also affect the waveform evolution. The higher crest traveling faster, and particle focusing and defocusing from the transverse force field and the non-uniform wave height distribution along a tilted wave crest, are the key factors to determine the particle accumulation and depletion. The above findings can explain the observation of the pitchfork waveform evolution and the defect motion. In the wave moving frame of the pitchfork waveform, the leading front waveform is straightened and associated with the transverse motion of defect to the open side of the pitchfork. The slow propagation of the trailing crest is detached from the strongly kinked pitchfork branch. This detached single crest is reconnected to the trailing crest because of the spreading field at the vertex.
關鍵字(中) ★ 微粒電漿
★ 紊波
關鍵字(英)
論文目次 1 Introduction 1
2 Background 5
2.1 Defect mediated turbulence 5
2.1.1 Wave turbulence 5
2.1.2 Defect mediated turbulence 6
2.1.3 Nonlinear dynamical equations and modulational instability 7
2.2 Dust acoustic wave 9
2.2.1 Dusty plasma 9
2.2.2 Dust acoustic wave 11
2.2.3 Wave-particle interaction 13
3 Experiment and data analysis 15
3.1 Experimental setup 15
3.2 Data analysis 16
4 Results and Discussion 19
4.1 Undulation waveform 20
4.2 1D waveform evolution 21
4.3 From 1D to 2D model - pitchfork waveform evolution 26
5 Conclusion 33
參考文獻 [1] M. Vinson, S. Mironov, S. Mulvey and A. Pertsov, Nature. 386, 6624 (1997).
[2] E. Bodenschatz, W. Pesch, and G Ahlers, Annu. Rev. Fluid Mech. 32,709 (2000).
[3] K. E. Daniels, and E. Bodenschatz, Phys. Rev. Lett. 88, 034501 (2002).
[4] C. Qiao, H. Wang, and Q. Ouyang, Phys. Rev. E 79, 016212 (2009).
[5] P. Coullet, C. Elphick, L. Gil, and J. Lega, Phys. Rev. Lett. 59, 884 (1987).
[6] P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lett. 62, 1619 (1989).
[7] J. Davidsen and R. Kapral, Phys. Rev. Lett 91, 058303 (2003).
[8] G. St-Yves and J.Davidsen, Phys. Rev. E 91 032926 (2005)
[9] J. C. Reid, H. Chate and J. Davidsen, EPL 94, 68003 (2011)
[10] B. Chapman, Glow Discharge Process, Wiley, Inter-science Press, (1995).
[11] M. Vinson, S. Mironov, S. Mulvey, and A. Pertsov, Nature 386, 477 (1997).
[12] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).
[13] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[14] C. J. Mitchell, M. Horanyi, O. Havnes, C. C. Porco, Science 311, 5767 (2006).
[15] V. V. Yaroshenko, F. Verheest, and G. E. Morfill, A&A 461, 2 (2007).
[16] G.S. Selwyn et al. J. Vac. Sci. Technol. A7, 2758 (1989)
[17] P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).
[18] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
[19] H. Ikezi, Phys. Fluids 29, 1764 (1986).
[20] J. H Chu and L. I Phys. Rev. Lett. 72, 4009 (1994).
[21] C. Yang, C. W. Io, L. I, Phys. Rev. Lett. 109, 225003 (2012)
[22] C. L. Chan and L. I, Phys. Rev. Lett. 98, 105002 (2007)
[23] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Rev. E 84, 066402 (2011)
[24] S. K. Sharma, A. Boruah, and H. Bailung, Phys. Rev. E 89, 013110 (2014)
[25] See D. Gabor, J. Inst. Elect. Eng. Part III, Radio Commun. 93, 429 (1946) for the Hilbert transform.
[26] N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543(1990); P. K. Shukla, Phys. Scr. 45, 504 (1992).
[27] P. Kaw and R. Singh, Phys. Rev. Lett. 79, 423 (1997).
[28] A. A. Mamun and P. K. Shukla, Phys. Plasmas 7, 4412 (2000).
[29] P. K. Shukla, M. Torney, R. Bingham and G. E. Morfill, Phys. Scr. 67,350 (2003).
[30] R. L. Merlino, Phys. Plasmas 16, 124501 (2009).
[31] A. Barkan, R. L. Merlino, and N. Dangelo, Phys. Plasmas 2, 10 (1995).
[32] J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).
[33] V. E. Fortov, A. D. Usachev, A. V. Zobnin, V. I. Molotkov, and O. F.Petrov, Phys. Plasmas 10, 1199 (2003).
[34] A. Piel, M. Klindworth, O. Arp, A. Melzer, and M. Wolter, Phys. Rev.Lett. 97, 205009 (2006).
[35] V. E. Fortov, O. F. Petrov, V. I. Molotkov, M. Y. Poustylnik, V. M. Torchinsky, V. N. Naumkin, and A. G. Khrapak Phys. Rev. E 71, 036413 (2005)
[36] P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw Phys. Rev. Lett. 101,065006 (2008)
[37] K. O. Menzel, O. Arp, and A. Piel Phys. Rev. Lett. 104, 235002 (2010)
[38] R. Fisher, K. Avinash, E. Thomas, R. Merlino, and V. Gupta, Phys. Rev. E 88, 031101(R) (2013)
[39] O. Arp, J. Goree, and A. Piel, Phys. Rev. E 85, 046409 (2012)
[40] K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E {f 83}, 016402 (2011).
[41] Y. Y. Tsai and L. I, Phys. Rev. E 86, 045402(R) (2012)
[42] M. C. Chang, Y. Y. Tsai, and L. I, Phys. Plasma, 20, 083703 (2013).
[43] Y. Y. Tsai and L. I, Phys. Rev. E 90, 013106 (2014).
[44] J. D. Williams, Phys. Rev. E 89, 023105 (2014).
[45] C. T. Liao, L. W. Teng, C. Y. Tsai, C. W. Io, and L. I, Phys. Rev. Lett.100, 185004 (2008).
[46] L. W. Teng, M. C. Chang, Y. P. Tseng, and L. I, Phys. Rev. Lett. 103,245005 (2009).
[47] M. C. Chang, L. W. Teng, and L. I, Phys. Rev. E 85, 046410 (2012).
[48] P. K. Shukla and B. Eliasson, Phys. Rev. E 86, 046402 (2012).
[49] Jun-Yi Tsai, Ya-Yi Tsai, and Lin I, Phys. Plasma, 22, 013701 (2015)
指導教授 伊林(Lin I) 審核日期 2015-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明