博碩士論文 103222022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.218.61.16
姓名 林家榮(Chia-Jung Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study)
相關論文
★ Stretching effect on the spin transport properties of single molecular junctions: A first-principle study★ First-principles study in wurtzite InN bulk, thin film, and nanobelt
★ The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study★ Spin transport calculation for thiol-ended single-molecule magnetic junction
★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions★ Analytic derivation for spin-transfer properties in magnetic tunnel junctions
★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性
★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction
★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process
★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model★ Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究★ Understanding Oscillatory Domain Wall Motion via Spin Waves Theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,將微小尺寸的分子使用在電子元件中,其特殊的電子傳輸特性使得單分子接面吸引相當多的研究;但是透過磁性金屬作為電極引入自旋極化效果,進而探討單分子磁性接面中的自旋傳輸特性,目前仍然相當缺乏實驗和理論的研究。在實驗上,STM-BJ和MCBJ兩項技術都能成功地建構所謂的單分子通道。但是對於精準度還是有很大的改善空間,所以需要重複這些實驗好幾百次來匯集成長條圖,以便降低實驗之間的差異性。而在理論上,我們已成功的利用第一原理計算方法以及非平衡態格林函數方法來研究單分子接面。足夠的實驗研究告訴我們,在如此微小的尺度,介面的影響力對於單分子通道是非常重要的,像是橋接分子就是其中一個切入點。經驗上,傳統的非磁性單分子通道認為以金作為電極,並以硫(thiol)作為橋接分子,可以得到有效的charge transfer和穩定的鍵結。但對於磁性電極(鈷),哪一個橋接分子才能得到有效的spin transfer?
本論文研究兩種橋接分子,軟硬酸鹼理論所建議的amine以及傳統非磁性單分子通道所頻繁使用的thiol來橋接磁性電極-鈷與中間分子-苯環。研究結果顯示,對於amine橋接分子的單分子通道會有較好的自旋注入效率並且可靠機械式操作得以調制。另外,在原本傳統非磁性接面(金)所常用的thiol橋接分子在磁性接面(鈷)時,無法對自旋極化電流產生選擇性。本項研究對於未來單分子磁性接面的研究,提供amine作為橋接分子的選擇並增加了對機械式控制技術的注意。
摘要(英) Two novel disciplines: spintronics and molecular electronics are significant revolutions in electronics applications. A specific topic between these two fields is single-molecule magnetic junction which combines spin effect and molecule devices. To thoroughly understand and control the single-molecule magnetic junction, we focus on the surface effect by replacing the anchoring group. Among different experimental techniques, mechanically controllable break junction (MCBJ) and STM break junction (STM-BJ) are extensively used in investigating the transport properties of single-molecule junction. Based on experimental processes, strain effect is necessarily included by stretching simulation. Moreover, to clarify the anchoring effect, this study considers two different anchoring ions forming two molecules, 1,4-benzenediamine (BDA) and 1,4-benzenedithol (BDT), sandwiched by two Co hcp[0001] nanowires. First-principle calculation with non-equilibrium green’s function gives adequate investigations of strain and anchoring effect on the spin transport properties. These two effects crucially impact on spin transport in single-molecule magnetic junctions. Our research demonstrates that the strain-enhanced spin injection efficiency of amine-ended single-molecule magnetic junction (BDA-based junction) involving a sign reversal and nearly perfect spin injection could be tuned by mechanical control. Besides, comparing BDA- and BDT-based junctions reveals the superior spin transfer in the amine-ended magnetic junctions (Co/Amine-ended/Co) is in sharp contrast to better charge transfer in the thiol-ended non-magnetic junctions (Au/thiol-ended/Au). Our interesting findings may pave a way for promising and potential tunability in spin injection efficiency for amine-ended single-molecule magnetic junction, simply under mechanical stimulus of break junction technique.
關鍵字(中) ★ 單分子接面
★ 自旋電子學
★ 分子電子學
★ 橋接效應
★ 自旋傳輸
關鍵字(英) ★ Single-Molecule Junctions
★ Spintronics
★ Molecular Electronics
★ Anchoring Effect
★ Spin Transport
論文目次 Chapter 1 Introduction 1
Chapter 2 Theory 8
 2.1  Density Function Theory 8
  2.1.1   Born-Oppenheimer Approximation 9
  2.1.2   Hartree-Fock Method 11
  2.1.3   Hohenberg-Kohn Theorem 13
  2.1.4   Kohn-Sham Equation 16
  2.1.5   Exchange-Correlation Energy Functional 17
  2.1.6   Pseudopotential Method 19
2.2   Non-Equilibrium Green’s Function Method 21
  2.2.1   Self-Consistent DFT+NEGF Calculation 21
  2.2.2   Spin-Transport Properties Calculation 25
Chapter 3 Computational Details 29
 3.1  Structural Geometry 29
 3.2  Parameter for Structural Relaxation 31
 3.3  Parameter for Spin-Transport Properties 33

Chapter 4 Results and Discussion 35
 4.1  Structural Relaxation under Stretching 35
 4.2  Spin Transport Properties of Co/BDA/Co 40
 4.3  Spin Transport Properties of Co/BDT/Co 44
 4.4  Spin Injection Factor and Spin Current 47
Chapter 5 Conclusion 50
References 51
參考文獻 [1] Tsutsui, M.; Taniguchi, M. Single Molecule Electronics and Devices. Sensors 2012, 12, 7259−7298.
[2] Ratner, M. A. Brief History of Molecular Electronics. Nat. Nanotechnol. 2013, 8, 378−381.
[3] Petty, M.C.; Bryce, M.R. & Bloor, D. Introduction to Molecular Electronics. New York: Oxford University Press. pp. 1–25.s
[4] Gimzewski, J.K.; Joachim, C. Nanoscale science of single molecules using local probes. Science. 1999, 283 (5408): 1683–1688.
[5] Aradhya, S. V.; Venkataraman, L. Single-Molecule Junctions Beyond Electronic Transport. Nat. Nanotechnol. 2013, 8, 399−410.
[6] Agrait, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum Properties of Atomic-Sized Conductors. Phys. Rep. 2003, 377, 81−279.
[7] Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van der Ruitenbeek, J. M. Lithographic Mechanical Break Junctions for Single- Molecule Measurements in Vacuum: Possibilities and Limitations. New J. Phys.. 2008, 10, 065008.
[8] Tao, N. J. Electron Transport in Molecular Junctions. Nat. Nanotechnol. 2006, 1, 173−181.

[9] Xu, B. Q.; Li, X. L.; Xiao, X. Y.; Sakaguchi, H.; Tao, N. J. Electromechanical and Conductance Switching Properties of Single Oligothiophene Molecules. Nano Lett. 2005, 5, 1491−1495.
[10] Huang, C.; Rudnev, A. V.; Hong, W.; Wndlowski, T. Break Junction under Electrochemical Gating: Testbed for Single-Molecule Electronics. Chem. Soc. Rev. 2015, 44, 889−901.
[11] Kim, Y.; Hellmuth, T. J.; Bürkle, M.; Pauly, F.; Scheer, E. Characteristics of Amine-Ended and Thiol-Ended Alkane Single- Molecule Junctions Revealed by Inelastic Electron Tunneling Spectroscopy. ACS Nano. 2011, 5, 4104−4111.
[12] Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H. Quantum Transport in Alkane Molecular Wires: Effects of Binding Modes and Anchoring Groups. J. Chem. Phys. 2009, 131, 244712.
[13] Ning, Z. Y.; Qiao, J. S.; Ji, W.; Guo, H. Correlation of Interfacial Bonding Mechanism and Equilibrium Conductance of Molecular Junctions. Front. Phys. 2014, 9, 780−788.
[14] Žutíc, I.; Fabiam, J.; Das Sarma, S. Spintronics: Fundamentals and applications Rev. Mod. Phys. 2004, 76, 323.
[15] Huai, Y. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects. AAPPS Bulletin. 2008, 18, 33.
[16] Datta, S and Das, B. Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 1990, 56, 665–667.
[17] Manago, T.; Akinaga, H. Spin-polarized light emitting diode using metal/insulator/semiconductor structures. Appl. Phys. Lett. 2002, 81, 694.
[18] Sanvito, S. The Rise of Spinterface Science. Nat. Phys. 2010, 6, 562−564.
[19] Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533−3539.
[20] Lindqvist, I.; Strandberg, B. The Crystal Structure of Ammonium Silver Dithiocyanate. Acta Crystallogr. 1957, 10, 173−177. (29) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter. 2009, 21, 395502.
[21] Franco, I.; Solomon, G. C.; Schatz, G. C.; Ratner, M. A. Tunneling Currents that Increase with Molecular Elongation. J. Am. Chem. Soc. 2011, 133, 15714−15720.
[22] Parker, S. M.; Smeu, M.; Franco, I.; Ratner, M. A.; Seideman, T. Molecular Junctions: Can Pulling Influence Optical Controllability? Nano Lett. 2014, 14, 4587−4591.


[23] Tang, Y.-H.; Bagci, V. M. K.; Chen, J.-H.; Kaun, C.-C. Conductance of Stretching Oligothiophene Single-Molecule Junctions: A First-Principles Study. J. Phys. Chem. C. 2011, 115, 25105−25108.
[24] D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society. 1928, 24, 89.
[25] V. Fock, Z. Phys. 1930, 61, 209.
[26] Born, B.; Oppenheimer, P., Zur Quantentheorie der Molekeln. Annalen der Physik. 1927, 389, 457.
[27] Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review. 1965, 140, A1133.
[28] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review. 1964, 136, B864.
[29] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B. 1992, 46, 6671.
[30] Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B. 2001, 63, 245407.

[31] Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device. Physical Review B. 2001, 63, 121104.
[32] NanoAcademic Technologies, http://www.nanoacademic.ca/
[33] Ordejón, P.; Artacho, E.; Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Physical Review B. 1996, 53, R10441.
[34] Louie, S. G.; Froyen, S.; Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Physical Review B. 1982, 26, 1738.
[35] Wang, X. W.; Fei, G. T.; Tong. P.; Xu, X. J.; Zhang, L. D. Structural control and magnetic properties of electrodeposited Co nanowires. Journal of Crystal Growth. 2007, 300,421–425.
[36] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: A Modular and Open-Source Sofware Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter. 2009, 21, 395502.
[37] Quantum ESPRESSO, http://www.quantum-espresso.org/
[38] Marzari, N.; Vanderbilt, D.; Alessandro De Vita.; Payne, M. C. Thermal Contraction and Disordering of the Al(110) Surface. Physical Review Letters. 1999, 82, 3296.
指導教授 唐毓慧(Yu-Hui Tang) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明