博碩士論文 103222028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.216.32.116
姓名 胡寬侃(Kuan-kan Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在半導體製程中,離子佈植及即隨後退火造成之固態磊晶成長常被利用於形成高濃度摻雜,為了瞭解固態磊晶成長,科學家提出了需多相關的實驗及理論模型嘗試了解其背後的機制,其中廣義費米能階位移理論為最完整發展的理論,利用摻雜物造成的費米能階之位移來解釋固態磊晶成長速度之提升與降低。然而,固態磊晶成長之速度不僅與摻雜物造成的費米能階位移有關,也和由雜質在晶格中所造成之應變有極大的相關性。在已被提出的帶有應變之費米能階位移理論中假設由載體所提供之晶格應變與由和矽原子等價之雜質的應變可直接合併以做成長速度之計算。在本次的研究中,我們利用離子佈植將帶電(磷、砷)與非帶電(碳、鍺)之摻雜物摻雜入矽晶片,並且利用其反射率來研究固態磊晶成長之動力學問題。我們發現碳摻雜物所形成之拉伸應變會對磊晶成長造成明顯的降低,這和先前提出帶有應變之費米能階位移理論中的預測並不符合。我們利用不同半徑大小之帶電(磷、砷)與非帶電(碳、鍺)之摻雜有系統地討論兩者所提供的應變及費米能階之位移,進而了解帶電與非帶電之摻雜在固態磊晶成長之動力學中扮演之角色,最後,我們在本篇論中提出了修正並更成功地描述帶有應變之費米能階位移理論。
摘要(英) The kinetics of solid phase epitaxial regrowth (SPER) is studied in amorphous silicon doping with dopant and isovalent impurities. Samples were co-implanted with phosphorus (P) and arsenic (As) to systematically form different proportion of dopant impurities. Some of samples were additionally implanted with C and Ge to induce tensile and compressive strain in Si. Subsequently all samples were implanted with high dose silicon to result in a continuous amorphous and annealed at 680°C in a vacuum-pumped furnace (~10-3Torr) using a rapid thermal annealing (RTA) system. Simultaneously the SPER dynamics were monitored using in situ time-resolved reflectivity measurement. The played role of strain induced by dopant and isovalent impurities with different atomic sizes disentangled by considering the actual Fermi-level shifting and effective strain induced by partial impurities, as obtained from Hall measurements and high-resolution X-ray diffraction. About 80% P+ ions and 20% As+ ions were activated while 19% C+ were incorporated due to the solubility of doping in Si. Contrary to in the previous model, SPER rate retardation was found in the cases of both isovalent-impurity-induced tensile and compressive strain. This observation shows it’s possible the role of strain is different for dopant and isovalent impurities in SPER. We propose a modified model incorporating strain into generalized Fermi-level shifting to inclusively explain the SPER dynamics.
關鍵字(中) ★ 磊晶成長
★ 矽基板
★ 費米能階位移
★ 離子佈植
關鍵字(英) ★ solid phase epitaxial regrowth
★ silicon substrate
★ generalized fermi level shifting
★ ion implantation
論文目次 Abstract i
Content iii
List of Figures v
List of Tables ix


1. Introduction 1
2. Background 5
2-1. Solid phase epitaxial regrowth 5
2-1-1. Basic concept of SPER 5
2-1-2. Growth of dopant implanted Si 7
2-2. Reported models for solid phase epitaxial regrowth 8
2-2-1. Bond rearrangement model 8
2-2-2. Interstitial-vacancy recombination model 10
2-2-3. Electronic processes at a/c interface model 14
2-2-4. Generalized Fermi level shifting model 16
2-2-5. Activation strain tensor 17
2-3. Solid solubility in ion implanted silicon 20
2-3-1. Strain effect on the solid solubility of impurities 22
3. Experimental setup and measurement method 24
3-1. Sample preparation 24
3-1-1. Stopping range of ion in matters and implantation profile 25
3-1-2. Ion implantation 26
3-1-3. RCA clean 27
3-2. Experiment setup 29
3-2-1. Time-resolved reflectivity 30
3-2-2. Van der Pauw Method 33
3-2-3. High-resolution X-ray diffraction 34
3-2-4. Strain calculation 36
3-2-5. Fermi-level calculation 36
4. Result and discussion 39
4-1. Time-resolved reflectivity and converted SPER rate for all samples 40
4-2. Activation and incorporation of doping 43
4-2-1. Activation rate of P and As 43
4-2-2. Carbon incorporated in Si 45
4-3. SPER rate in n-type dopants and isovalent co-doping 47
4-4. Modified strain included GFLS model 49
5. Conclusions 53

Bibliography 54
參考文獻 Bibliographies

[1]. S. D. Kim, C. M. Park, and J. C. S. Woo, IEEE Trans. Electron Devices 49, 1748 (2002).
[2]. S. N. Hong, G. A. Ruggles, J. J. Wortman, and M. C. Oztrk, IEEE Trans. Electron Devices 38, 476 (1991).
[3]. T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, and A. Carnera, Nucl. Instrum. Meth. B 186, 287 (2002).
[4]. S. Whelan, V. Privirera, M. Italia, G. Mannino, C. Bongiorno, C. Spinella, G. Fortunato, L. Mariucci, M, Stanizzi, and A. Mittiga, J. Vac. Sci. Technol. B 20, 644(2002).
[5]. K. C. Ku, C. F. Nieh, J. Gong, L. P. Huang, Y. M. Sheu, C. C. Wang, C. H. Chen, H. Chang, L. T. Wang, T. L. Lee, S. C. Chen, and M. S. Liang, Appl. Phys. Lett. 89, 112104 (2006).
[6]. L. A. Edelman, S. Jin, K. S. Jones, R. G. Elliman, and L. M. Rubin, Appl. Phys. Lett. 93, 072107 (2008).
[7]. Y. Sun, S. E. Thompson and T. Nishida, J. Appl. Phys. 101, 104503 (2007).
[8]. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).
[9]. K. J. Chui, K. W. Ang, N. Balasubramanian, M. F. Li, G. S. Samudra and Y. C. Yeo, IEEE Trans. Electron Devices 54, 249 (2007).
[10]. S. M. Koh, X. Wang, K. Sekar, W. Krull, G. S. Samudra and Y. C. Yeo, J. Electrochem. Soc. 156, H361 (2009).
[11]. Z. Te, T. Kim, A. Zojaji, E. Sanchez, Y. Cho, M. Castle, and M. A. Foad, Semicond. Sci. Technol. 22, 171 (2007).
[12]. S. Ruffell, I. V. Mitchell, and P. J. Simpson, J. Appl. Phys. 98, 083522 (2005).
[13]. S. M. Koh, G. S. Samudra, and Y. C. Yeo, Appl. Phys. Lett. 97, 032111 (2010).
[14]. B. C. Johnson and J. C. McCallum, Phys. Rev. B. 76, 045216 (2007)
[15]. D. D’Angelo, L. Romano, I. Crupi, E. Carria, V. Privitera and M. G. Grimaldi. Appl. Phys. Lett. 93, 231901 (2008).
[16]. W. Y. Woon, S. H. Wang, Y. T. Chuang, M. C. Chuang and C. L. Chen, Appl. Phys. Lett. 97, 141906 (2010).
[17]. J. W. Mayer, L. Eriksson and J. A. Davies, Can. J. Phys. 45, 663 (1968).
[18]. G. L. Olson, J. A. Roth, Mater. Sci. Rep. 3, 1 (1988).
[19]. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).
[20]. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, J. Appl. Phys. 57, 1795 (1985).
[21]. L. Cseprig, E. F. Kennedy, T. J. Gallagher and J. W. Mayer. J. Appl. Phys. 48, 10 (1977).
[22]. I. Suni, G. Go¨ltz, M. G. Grimaldi, M. A. Nicolet and S. S. Lau, Appl, Phys. Lett. 40(3), 269 (1982).
[23]. I. Suni, G. Go¨ltz, M. -A. Nicolet and S. S. Lau, Thin Solid Films 93, 171 (1982).
[24]. A. Lietoila, A. Wakita, T. W. Sigmon and J. F. Gibbons, J. Appl. Phys. 53, 4399 (1982).
[25]. E. F. Kennedy, L. Cseprgi, J. W. Mayer and T. W. Sigmon. J. Appl. Phys. 48, 4241 (1977).
[26]. L. Csepregi, E. F Kennedy, J. W. Mayer and T. W. Sigmon, J. Appl. Phys. 49, 3906 (1978).
[27]. J. Narayan, J. Appl. Phys. 53, 12 (1982).
[28]. J. S. Williams and R. G. Elliman, Phys. Rev. Lett. 51, 12 (1983).
[29]. G. Q. Lu, E. Nygren and M. J. Aziz, J. Appl. Phys. 70, 5323 (1991).
[30]. M. J. Aziz, Paul C. Sabin and G. Q. Lu, Phys. Rev. B. 44, 18 (1991).
[31]. F. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
[32]. J. S. Williams and R. G. Elliman, Nuclear Instruments and Methods, 182–183, 389-395 (1981).
[33]. R. Duffy, T. Dao, Y. Tamminga, K. van der Tak, F. Roozeboom and E. Augendre Appl. Phys. Lett. 89, 071915 (2006).
[34]. H. J. Herzog, L. Csepregi and H. Seidel, J. Electrochem. Soc. Solid-state science and technology, Vol. 131, No. 12, p. 2969 (1984).
[35]. B. Sadigh, T. J. Lenosky, M. J. Caturla, A. A. Quong, L. X. Benedict, T. D. de la Rubia, M. M. Giles, M. Foad, C. D. Spataru and S. G. Louie, Appl. Phys. Lett. 80, 4738 (2002).
[36]. N. Sugii, S. Irieda, J. Morioka and T. Inada, J. Appl. Phys. 96, 1 (2004)
[37]. C. Ahn, N. Bennett, S. T. Dunham and N. E. B. Cowern, Phys. Rev. B. 79, 073201 (2009).
[38]. J. F. Ziegler and J. P. Biersack and M. D. Ziegler, SRIM- The Stopping and Range of Ions in Matter. SRIM Co. (2008).
[39]. W. E. Beadle, J. C. C. Tsai and R. D. Plummer, Quick reference manual for silicon integrated circuit technology, Bell Telephone Laboratories (1985).
[40]. S. M. Sze, Physics of semiconductor devices, 2nd ed (Wiley, New york, 1976).
[41]. S. M. Sze and J. C. Irvin, Solid-State Electron. 11, 599 (1968)
[42]. D. Bednarczyk and J. Bednarcczyk, Phys. Lett. 64A, 409 (1978).
[43]. S. H. Yeong, B. Colombeau, K. R. C. Mok, F. Benistant, C. J. Liu, A. T. S. Wee, L. Chan, A. Ramam, and M. P. Srinivasan, J. Electrochem. Soc. 155, H69 (2008).
[44]. H. J. Osten, M. Kim, K. Pressel, and P. Zaumseil, Appl. Phys. Lett. 74, 836 (1999).
[45]. B. C. Johnson, T. Ohshima, and J. C. McCallum, J. Appl. Phys. 111, 034906 (2012).
指導教授 溫偉源(Wei-yen Woon) 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明