博碩士論文 103222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.149.233.72
姓名 陳明琪(Ming-Chi Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 矽基板上鍺薄膜的拉曼光譜研究
(Raman spectroscopy study of Germanium thin film on Silicon subtracts)
相關論文
★ 不同應力下之石墨烯電特性研究★ AlGaN/GaN高電子遷移率電晶體異質結構的光學性質與其缺陷討論
★ 氧化鎘鋅與氧化鎂鋅之光學性質分析★ 氧化鋅薄膜與奈米柱的螢光光譜
★ 碳化矽塊材之螢光光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文藉由拉曼散射光(Raman scattering)來分析調變不同製程參數(如:氣體流量、工作壓力與內磁場線圈的電流)下鍺薄膜的晶格品質與應力張量的變化,再以光放射光譜(OES)探討調整製程參數時,製程環境的電漿狀態變化情形,最後利用光激螢光(PL)檢測以鍺薄膜作為緩衝層後,磊晶於鍺上方之砷化鎵薄膜的品質好壞。由拉曼光譜可知,未退火鍺薄膜中皆出現明顯的非晶拉曼訊號,非晶的晶格結構排列無序,原子之間的作用力相較於結晶較弱,並且可能有較多的晶格缺陷,因此除了訊號出現在低能量範圍,造成拉曼訊號不對稱的肩峰(Shoulder),鍺薄膜內的應力也因此為伸張應力。利用OES光譜的分析發現,非晶訊號產生的多寡與製程環境中的氫解離濃度成正相關,這是因為氫的自由基化性活潑,容易使基板原子形成懸鍵(Dangling Bond),這使其他鍺原子更容易與基板上的原子鍵結,而GeH4氣體流量上升、工作壓力變大與內磁場線圈的電流變小等製程參數調變對氫解離濃度下降有著明顯的影響,因而導致非晶訊號強度上升。然而在退火後,因高溫提供足夠能量使原子能移動到正確的晶格位置,不但使晶格結構排列整齊,使非晶轉為結晶,也減少鬆散的區域而使薄膜緻密化,薄膜內的應力因而得到釋放,甚至轉為壓縮應力。光激螢光光譜的結果中顯示,利用鍺薄膜做為緩衝層的效果十分良好,砷化鎵樣品的能隙發光範圍與砷化鎵塊材的發光範圍近乎相同,且當2 μm砷化鎵樣品在能隙的發光訊號之半高寬相較1 μm砷化鎵樣品之半高寬更小,此外,砷化鎵的厚度增加到2 μm時缺陷在低能量區的訊號強度明顯的下降,整體顯示晶格品質變佳。
摘要(英) This work investigates the Raman spectroscopy of low temperature (180 ℃) growth germanium thin film on Si (100) substrate using electron cyclotron resonance chemical vapor deposition. The film quality and stress with various process parameters during deposition process, such as flow rates of GeH4, working pressures and inner sub-magnetic coil current, have been discussed. As the GeH4 flow rate increased, the crystallinity of Ge thin film was increased and the tensile strain was decreased. In addition, if the working pressure was increased, the Ge phonon peak position shifted to low energy more and the crystallinity was decreased, as well as the result by increasing GeH4 flow rate. However, if the inner sub-magnetic coil current was increased, the crystallinity of Ge thin film was increased and the tensile strain was decreased. Through the investigation of the OES spectroscopy, these results were depended on the hydrogen dissociation, which enhances germanium lattice structure arranged neatly during deposition process. If the flow rates of GeH4 increased, and the working pressure increased or the inner sub-magnetic coil current was decreased, the hydrogen dissociation would decrease obviously and caused the crystallinity of Ge thin film and the stress decreased. After the annealing process, the qualities of germanium thin films were getting better. The bandgap peak of GaAs grown on such germanium buffer layer was observed successfully in photoluminescence spectra.
關鍵字(中) ★ 鍺
★ 拉曼光譜
★ 光放射光譜
★ 低溫
★ 矽基板
★ 電子迴旋共振化學氣相沉積
關鍵字(英) ★ Germanium thin film
★ Raman spectroscopy
★ Optical emission spectroscopy
★ low temperature
★ Si substrate
★ ECR-CVD
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 簡介 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 研究方法與基本原理 4
2-1 拉曼散射原理 5
2-2 應力引起聲子能量偏移 9
2-3 結晶率 11
2-4 薄膜特性與電漿狀況的相關性 12
2-5 薄膜成長機制對應力的影響 17
第三章 實驗樣品與實驗裝置 19
3-1 實驗樣品介紹 19
3-2 電漿監控設備介紹 25
3-3 拉曼光譜實驗 26
3-4 光激螢光光譜實驗 28
第四章 實驗結果與討論 30
4-1 調變氣體流量對薄膜生成的影響 30
4-1.1 未退火鍺薄膜之拉曼光譜分析 30
4-1.2 不同退火溫度的鍺薄膜之拉曼光譜分析 40
4-2 調變工作壓力對薄膜生成的影響 44
4-2.1 未退火鍺薄膜之拉曼光譜分析 44
4-2.2 不同退火溫度的鍺薄膜之拉曼光譜分析 50
4-3 調變磁場大小對薄膜生成的影響 54
4-3.1 未退火鍺薄膜之拉曼光譜分析 54
4-3.2 不同退火溫度的鍺薄膜之拉曼光譜分析 61
4-4 光激螢光光譜 65
第五章 結論 67
參考文獻 69
參考文獻 [1] Jifeng Liu et al., “Ge-on-Si optoelectronics“, Thin Solid Films 520 (2012) 3354–3360
[2] J. Liu, Photonics 1, 162 (2014)
[3] V. Sorianello et al., “Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization“, Microelectronic Engineering 88 (2011) 526–529
[4] Andrew Clark, David Williams, Radek Roucka, “應虛擬鍺基板技術:多接面太陽能電池全新應用“,化合物半導體雜誌, No.8 第五期, (2013)
[5] 工研院IEK(http://ieknet.iek.org.tw/, 2005/11)
[6] Th.Gruber et al., “Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. Vol. 83, No. 16, 20 (2003)
[7] Teng-Hsiang Chang et al. , International Journal of Photoenergy (2014) 906037
[8] Hsu C. W., Chen Y. F. & Su Y. K. Quality improvement of GaN on Si substrate for ultraviolet photodetector application. IEEE J. Quantum Elect. 50, 35 (2014)
[9] C.V.Raman and K.S.Krishnan, “A new type of secondary radiation”, Nature, 121, 501 (1928)
[10] A.B.Talochkin and V.A.Markov, “Raman resonance in the strained Ge quantum dot array”, Nanotechnology, Vol. 19, pp. 275402, May 2008
[11] R. Tsu et al., Appl. Phys. Lett. 40, 6 (1982)
[12] Shanglong Peng, Duokai Hu, Deyan He, “Low-temperature preparation of polycrystalline germanium thin films by Al-induced crystallization“, Applied Surface Science 258 (2012) 6003
[13] L.R. Muniz et al., J. Phys.: Condens. Matter, 19 (2007), p. 076206
[14] Hui-Song Li et al, Jpn. J. Appl. Phys. 55 (2016)061302
[15] Minseo Park et al., Appl. Phys. Lett. 81, 10 (2002)
[16] Cao Kewei et al., J. Semicond. 37,6 (2016)
[17] 蕭宏 (2001) 半導體製程技術導論.學銘圖書有限公司‧歐亞書局有限公司
[18] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)
[19] G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, J. Appl. Phys. 99(2006) 093514
[20] Rajasekar P, Dane Scott et al, Nucl. Instrum. Methods B 245(2006 ) 411
[21] A. Matsuda et al., Sol Energ Mat Sol C 78, 3-6326 (2003).
[22] S. Kanakaraju, A.K. Sood, S. Mohan, Phys. Rev. B, 61 (2000) 8334
[23] 柳克強、連頌恩、范智翔、林鴻彬(2013)。Roll-to-Roll 電漿化學氣相沉積系統電漿放射光譜特性量測分析(計畫編號 1022001INER017)。新竹市:國立清華大學
[24] A. Matsuda, J Non-Cryst Solids 338, 1-12 (2004).
[25] Chie-Sheng Liu, Li-Wei Chou, Lu-Sheng Hong and Jyh-Chiang Jiang, J. Am. Chem. Soc., 2008, 130 (16), p. 5440
[26] 王榆茜, “利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為“,國立中央大學 材料科學與工程研究所 碩士論文 (2011)
[27] 李永祥, “TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究“,國立中央大學 電機系 碩士論文(2011)
[28] 張喬,“低溫成長鍺薄膜於單晶矽基板上之研究“, 國立中央大學 光電學系 碩士論文 (2013)
[29] Mark Fox (2010)。Optical Properties of Solids。Oxford University Press
[30] A. Cowley et al., “Fabrication and Characterisation of GaAs Nanopillars using Nanosphere Lithography and Metal Assisted Chemical Etching“, J. Name. , 6(2013)30468
指導教授 鄭劭家(Chao-Chia Cheng) 審核日期 2016-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明