博碩士論文 103222601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.140.188.16
姓名 李功喬(Gregorio de Leon III)  查詢紙本館藏   畢業系所 物理學系
論文名稱 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態
(Search for heavy resonances decaying to a pair of Higgs bosons in four b quark final state in pp collisions at √s = 13 TeV using the CMS detector at the LHC)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC
★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克
★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率★ The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV
★ 於尋找單希格斯粒子中研究噴流子結構可觀測量★ The analysis of the TASEH CD102 data
★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文的分析裡, 我們尋找重共振態(卡魯拉-凱勒重力子或輻射子)衰變到一對標準模型的希格斯粒子的現象。兩個希格斯玻色子進一步衰變為一對底夸克-反底夸克作為最終狀態。這篇分析用的數據是來自質心能量為13兆電子伏特的質子對撞,這是對應到2015年用緊湊渺子線圈偵測器在大型強子對撞機第二階段運行時所搜集的2.7逆飛靶的積分亮度。因為這些共振態粒子的質量大於1兆電子伏特,所以這些希格斯玻色子具有高動量,而希格斯粒子衰變成的兩個底夸克會被重建成一個強子噴流。另外, 我們使用一個新的標記演算法"雙底夸克標記子"來辨認在希格斯噴流裡的兩個底夸克, 我們也使用"字母表" 方法來估計背景事件的數目。預測出來的背景事件數目顯示出了它跟搜集到的數據有很好的一致性,並且在所蒐搜集到的數據裡沒有觀察到顯著的多餘事件。因此這個結果可以用95%信心水準的上限來詮釋。在質量範圍在1兆電子伏特到4.5兆電子伏特之間,重力子跟輻射子存在的可能性都還沒有辦法排除。對於所假設的額外彎曲維度模型的這些參數並在所給定的質量範圍內,還需要更多的統計數據才能排除它們的可能性。
摘要(英) The search for heavy resonances (i.e. Kaluza-Klein Bulk Graviton and Radion) decaying to a pair of standard model Higgs bosons is presented. Both Higgs bosons decay further to b quark-antiquark pairs as the final state. The data used for this analysis were from the proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 2.7 fb−1 and were collected by the CMS detector during the Run-II of the LHC in 2015. These resonance particles have masses that are ≥ 1 TeV, thus the Higgs bosons are highly Lorentz-boosted and each H → b ̄b can be reconstructed as one hadronic jet. A new tagging algorithm called “double-b tagger” is used to identify the b ̄b pairs inside the Higgs jet. The “Alphabet” method is used to estimate the background. The predicted background shows good agreement with the data and no significant data excess was observed. The results are then interpreted in terms of 95% CLs upper limit on the production cross section of the resonances. No exclusion was made on both Bulk Graviton and Radion mass between 1000 to 4500 GeV. A larger data sample is needed to exclude from the given mass range for the assumed WED model parameter.
關鍵字(中) ★ 重共振態
★ 卡魯拉-凱勒重力子
★ 輻射子
★ 希格斯玻色子
★ 底夸克
★ 雙底夸克標記子
關鍵字(英) ★ Heavy resonances
★ Bulk Graviton
★ Radion
★ Higgs boson
★ b quarks
★ double-b tagger
論文目次 Chinese Abstract ii
Abstract iii
Acknowledgement iv
1 Introduction 1
1.1 TheoreticalOverview.......................... 2
1.1.1 Self-CouplingHiggs ...................... 3
1.1.2 Warped Extra Dimensions................... 4
Kaluza-KleinGraviton..................... 7
Radion.............................. 8
1.2 OverviewofAnalysisStrategy .................... 8
1.3 ReviewofRelatedLiterature...................... 10
2 Experimental Apparatus: the LHC and the CMS Detector 15
2.1 LargeHadronCollider ......................... 15
2.2 CompactMuonSolenoid........................ 17
2.2.1 CoordinateSystem....................... 19
2.2.2 Magnet System ......................... 21
2.2.3 InnerTrackingSystem..................... 22
PixelDetector.......................... 23
StripTracker........................... 24
2.2.4 ElectromagneticCalorimeter ................. 25
2.2.5 HadronCalorimeter ...................... 27
2.2.6 Muon Detector System..................... 29
2.3 The Trigger System ........................... 31
2.3.1 Level 1 Trigger System..................... 32
2.3.2 High-Level Trigger System .................. 33
3 Analysis Strategy 35
3.1 Physical Object Reconstruction .................... 35
3.1.1 Jet Reconstruction ....................... 36
Jet Clustering .......................... 37
Jet Grooming .......................... 39
3.2 b-Tagging................................. 40
3.2.1 “Double-b Tagger” Algorithm ................ 41
3.3 Data and Simulated Samples ..................... 44
3.3.1 Data Samples .......................... 44
3.3.2 Trigger.............................. 44
3.3.3 Simulated Samples....................... 45
3.4 Event Selection ............................. 48
3.4.1 Jet Kinematics Selection .................... 49
3.4.2 Higgs Mass Selection...................... 49
3.4.3 Dijet Selection.......................... 50
3.4.4 N-Subjettiness Selection .................... 50
3.4.5 Tagging Selection........................ 52
3.4.6 Selection Distribution ..................... 52
3.5 Data and MC Comparison....................... 53
4 Background Estimation 59
4.1 “ALPHABET” Method......................... 59
4.1.1 Double-b Tagger as the Tagging Variable . . . . . . . . . . 61
4.1.2 Result .............................. 62
5 Systematic Uncertainties 63
5.1 Systematics on Signal Efficiency.................... 63
5.2 Systematics on Background Shape + Normalization . . . . . . . . 68 5.3 Summary of the Systematic Uncertainties . . . . . . . . . . . . . . 68
6 Results and Discussion 75
6.1 Limit Setting............................... 75
6.2 LimitPlot “Brazil-Band Plot” ..................... 77
7 Summary, Conclusion, and Outlook 81
Bibliography 83
A Comparison of Different Heavy Resonance Models 95
B Study of Neutrinos inside AK8 b-jets
參考文獻 [1] CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30 –61. ISSN: 0370-2693. DOI: http://dx.doi.org/10.1016/ j.physletb.2012.08.021. URL: http://www.sciencedirect. com/science/article/pii/S0370269312008581.
[2] ATLAS Collaboration. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1 (2012), pp. 1 –29. ISSN: 0370-2693. DOI: http: //dx.doi.org/10.1016/j.physletb.2012.08.020. URL: http : / / www . sciencedirect . com / science / article / pii / S037026931200857X.
[3] CMS Collaboration. “Observation of a new boson with mass near 125 GeV in pp collisions at √s = 7 and 8 TeV”. In: Journal of High En- ergy Physics 2013.6 (2013), p. 81. ISSN: 1029-8479. DOI: 10 . 1007 / JHEP06(2013)081. URL: https://doi.org/10.1007/ JHEP06(2013)081.
[4] A. Nisati and V. Sharma. Discovery of the Higgs Boson. World Scien- tific Publishing Company, 2016. ISBN: 9789814425469. URL: https:// books.google.com.tw/books?id=3Y74DAAAQBAJ.
[5] Gordon Kane. “The dawn of physics beyond the standard model”. In: Scientific American 288.6 (2003), pp. 68–75.
[6] David Galbraith. UX: Standard Model of the Standard Model. 2017. URL: http : / / davidgalbraith . org / portfolio / ux - standard - model-of-the-standard-model/.
[7] Wouter van den Wollenberg, Bob van Eijk, and Magdalena Slawinska. “Sparkling Beauty: A measurement of the b ̄bγγ cross-section at 8 TeV with ATLAS”. Presented 29 Mar 2017. 2017. URL: http://cds.cern. ch/record/2259889.
[8] Antonio Pich. “The Standard Model of Electroweak Interactions”. In: Pro- ceedings, High-energy Physics. Proceedings, 18th European School (ESHEP 2010): Raseborg, Finland, June 20 - July 3, 2010. [,1(2012)]. 2012, pp. 1–50. arXiv: 1201.0537 [hep-ph]. URL: https://inspirehep.net/ record/1083304/files/arXiv:1201.0537.pdf.
[9] Daniel de Florian and Javier Mazzitelli. “Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD”. In: Phys. Rev. Lett. 111 (20 2013), p. 201801. DOI: 10.1103/PhysRevLett.111.201801. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.111.201801.
[10] Magdalena Slawinska et al. “Phenomenology of the trilinear Higgs coupling at proton-proton colliders”. In: (2014). arXiv: 1408 . 5010 [hep-ph].
[11] J. Baglio et al. “The measurement of the Higgs self-coupling at the LHC: theoretical status”. In: Journal of High Energy Physics 2013.4 (2013), p. 151. ISSN: 1029-8479. DOI: 10.1007/JHEP04(2013)151. URL: https:// doi.org/10.1007/JHEP04(2013)151.
[12] Lisa Randall and Raman Sundrum. “Large Mass Hierarchy from a Small Extra Dimension”. In: Phys. Rev. Lett. 83 (17 1999), pp. 3370–3373. DOI: 10.1103/PhysRevLett.83.3370. URL: https://link.aps.org/ doi/10.1103/PhysRevLett.83.3370.
[13] Alexandra Carvalho Antunes de Oliveira. “New physics from warped compact extra dimensions: from model building to colliders signals”. PhD thesis. Sao Paulo, IFT, 2014. URL: https://inspirehep.net/ record/1496829/files/000837676.pdf.
[14] Alexandra Oliveira. “Gravity particles from Warped Extra Dimensions, predictions for LHC”. In: (2014). arXiv: 1404.0102 [hep-ph].
[15] Bogdan A. Dobrescu. “Electroweak symmetry breaking as a consequence of compact dimensions”. In: Phys.Lett. B461 (1999), pp. 99–104. DOI: 10.1016/S0370-2693(99)00839-4. arXiv: hep-ph/9812349 [hep-ph].
[16] Valery P. Gusynin et al. “Gauged Nambu-Jona-Lasinio model with ex- tra dimensions”. In: Phys.Rev. D70 (2004), p. 096005. DOI: 10.1103/ PhysRevD.70.096005. arXiv: hep-ph/0406194 [hep-ph].
[17] Michio Hashimoto, Masaharu Tanabashi, and Koichi Yamawaki. “Dy- namical electroweak symmetry breaking from extra dimensions”. In: (2003), pp. 291–297. arXiv: hep-ph/0304109 [hep-ph].
[18] William A. Bardeen, Christopher T. Hill, and Manfred Lindner. “Minimal Dynamical Symmetry Breaking of the standard model”. In: Phys.Rev. D41 (1990), p. 1647. DOI: 10.1103/PhysRevD.41.1647.
[19] Yang Bai, Marcela Carena, and Eduardo Ponton. “The Planck Scale from Top Condensation”. In: Phys.Rev. D81 (2010), p. 065004. DOI: 10.1103/ PhysRevD.81.065004. arXiv: 0809.1658 [hep-ph].
[20] Csaba Csáki et al. “Cosmology of brane models with radion stabiliza- tion”. In: Phys. Rev. D 62 (4 2000), p. 045015. DOI: 10.1103/PhysRevD. 62.045015. URL: https://link.aps.org/doi/10.1103/ PhysRevD.62.045015.
[21] Kaustubh Agashe et al. “Warped gravitons at the CERN LHC and be- yond”. In: Phys. Rev. D 76 (3 2007), p. 036006. DOI: 10.1103/PhysRevD. 76.036006. URL: https://link.aps.org/doi/10.1103/ PhysRevD.76.036006.
[22] Liam Fitzpatrick et al. “Searching for the Kaluza-Klein graviton in bulk RS models”. In: Journal of High Energy Physics 2007.09 (2007), p. 013. URL: http://stacks.iop.org/1126-6708/2007/i=09/a=013.
[23] Search for heavy resonances decaying to a pair of Higgs bosons in four b quark final state in proton-proton collisions at sqrt(s)=13 TeV. Tech. rep. CMS-PAS- B2G-16-008. Geneva: CERN, 2016. URL: https://cds.cern.ch/ record/2202811.
[24] Gian F. Giudice, Riccardo Rattazzi, and James D. Wells. “Graviscalars from higher dimensional metrics and curvature Higgs mixing”. In: Nucl. Phys. B595 (2001), pp. 250–276. DOI: 10 . 1016 / S0550 - 3213(00 ) 00686-6. arXiv: hep-ph/0002178 [hep-ph].
[25] Daniele Dominici et al. “The Scalar sector of the Randall-Sundrum model”. In: Nucl. Phys. B671 (2003), pp. 243–292. DOI: 10.1016/j. nuclphysb.2003.08.020. arXiv: hep-ph/0206192 [hep-ph].
[26] I. Antoniadis and R. Sturani. “Higgs graviscalar mixing in type I string theory”. In: Nucl. Phys. B631 (2002), pp. 66–82. DOI: 10.1016/S0550- 3213(02)00214-6. arXiv: hep-th/0201166 [hep-th].
[27] Nishita Desai, Ushoshi Maitra, and Biswarup Mukhopadhyaya. “An up- dated analysis of radion-higgs mixing in the light of LHC data”. In: JHEP 10 (2013), p. 093. DOI: 10.1007/JHEP10(2013)093. arXiv: 1307.3765 [hep-ph].
[28] Marco Pieri. SM Higgs Branching Ratios and Total Decay Widths (update in CERN Report4 2016). 2016. URL: https://twiki.cern.ch/twiki/ bin/view/LHCPhysics/CERNYellowReportPageBR.
[29] A. Denner et al. “Standard Model Higgs-Boson Branching Ratios with Uncertainties”. In: Eur. Phys. J. C71 (2011), p. 1753. DOI: 10.1140/epjc/ s10052-011-1753-8. arXiv: 1107.5909 [hep-ph].
[30] ATLAS Collaboration. “Search for Higgs Boson Pair Production in the γγbb Final State Using pp Collision Data at √s = 8 TeV from the ATLAS Detector”. In: Phys. Rev. Lett. 114 (8 2015), p. 081802. DOI: 10.1103/ PhysRevLett.114.081802. URL: https://link.aps.org/doi/ 10.1103/PhysRevLett.114.081802.
[31] ATLAS Collaboration. Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment. Tech. rep. ATLAS-CONF-2014-004. Geneva: CERN, 2014. URL: http://cds. cern.ch/record/1664335.
[32] ATLAS Collaboration. “Search for Higgs boson pair production in the b ̄bb ̄b final state from pp collisions at √s = 8 TeVwith the ATLAS detector”. In: Eur. Phys. J. C75.9 (2015), p. 412. DOI: 10.1140/epjc/s10052-015- 3628-x. arXiv: 1506.00285 [hep-ex].
[33] ATLAS Collaboration. “Searches for Higgs boson pair production in the hh → bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector”. In: Phys. Rev. D 92 (9 2015), p. 092004. DOI: 10.1103/PhysRevD.92. 092004. URL: https://link.aps.org/doi/10.1103/PhysRevD. 92.092004.
[34] ATLAS Collaboration. “Search for pair production of Higgs bosons in the b ̄bb ̄b final state using proton–proton collisions at √s = 13 TeV with the ATLAS detector”. In: Phys. Rev. D94.5 (2016), p. 052002. DOI: 10.1103/ PhysRevD.94.052002. arXiv: 1606.04782 [hep-ex].
[35] CMS Collaboration. “Searches for heavy Higgs bosons in two-Higgs- doublet models and for t →ch decay using multilepton and diphoton final states in pp collisions at 8 TeV”. In: Phys. Rev. D90 (2014), p. 112013. DOI: 10.1103/PhysRevD.90.112013. arXiv: 1410.2751 [hep-ex].
[36] CMS Collaboration. “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A de- caying to Zh, in the final states with h→ τ τ ”. In: 755 (2016), pp. 217 –244. ISSN: 0370-2693. DOI: http://dx.doi.org/10.1016/j.physletb. 2016.01.056. URL: http://www.sciencedirect.com/science/ article/pii/S0370269316000757.
[37] The CMS collaboration. “Identification of b-quark jets with the CMS ex- periment”. In: Journal of Instrumentation 8.04 (2013), P04013. URL: http: //stacks.iop.org/1748-0221/8/i=04/a=P04013.
[38] CMS Collaboration. “Search for two Higgs bosons in final states contain- ing two photons and two bottom quarks in proton-proton collisions at 8 TeV”. In: Phys. Rev. D 94 (5 2016), p. 052012. DOI: 10.1103/PhysRevD.94.052012. URL: https://link.aps.org/doi/10.1103/ PhysRevD.94.052012.
[39] CMS Collaboration. “Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV”. In: Phys. Lett. B749 (2015), pp. 560–582. DOI: 10. 1016/j.physletb.2015.08.047. arXiv: 1503.04114 [hep-ex].
[40] CMS Collaboration. “Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks”. In: Eur. Phys. J. C 76.CMS-EXO-12-053. CERN-EP-2016-041. CMS-EXO-12-053 (2016), 371. 38 p. URL: https://cds.cern.ch/record/2134962.
[41] Experiments. 2012. URL: http://cds.cern.ch/record/1997374.
[42] The Large Hadron Collider. 2014. URL: http://cds.cern.ch/record/
1998498.
[43] “LHC Guide”. 2017. URL: https://cds.cern.ch/record/2255762.
[44] Building the HL-LHC with the Industry. URL: https://project-hl- lhc-industry.web.cern.ch/.
[45] The accelerator complex. 2012. URL: http://cds.cern.ch/record/ 1997193.
[46] Cinzia De Melis. “The CERN accelerator complex. Complexe des ac- cèlèrateurs du CERN”. In: (2016). General Photo. URL: http://cds. cern.ch/record/2197559.
[47] Mike Lamont. “LHC Performance in Run 2 and Beyond”. In: PoS Lep- tonPhoton2015 (2016), 001. 8 p. URL: http://cds.cern.ch/record/ 2257503.
[48] CMS Collaboration. “The CMS experiment at the CERN LHC”. In: Journal of Instrumentation 3.08 (2008), S08004. URL: http://stacks.iop.org/ 1748-0221/3/i=08/a=S08004.
[49] Tai Sakuma and Thomas McCauley. “Detector and Event Visualization with SketchUp at the CMS Experiment”. In: Journal of Physics: Conference Series 513.2 (2014), p. 022032. URL: http://stacks.iop.org/1742- 6596/513/i=2/a=022032.
[50] Matthias Schott and Monica Dunford. “Review of single vector boson production in pp collisions at √s = 7 TeV”. In: Eur. Phys. J. C74 (2014), p. 2916. DOI: 10.1140/epjc/s10052-014-2916-1. arXiv: 1405. 1160 [hep-ex].
[51] A. Astbury, F.C. Khanna, and R.W. Moore. Fundamental Interactions: Pro- ceedings of the 22nd Lake Louise Winter Institute, Lake Louise, Alberta, Canada, 19-24 February, 2007. World Scientific Publishing Company Incorporated, 2008. ISBN: 9789812776099. URL: https://books.google.com.tw/ books?id=hi1pDQAAQBAJ.
[52] Heidi Schellman. Learn Hardon Collider Physics in 3 Days. 2005. URL: http://particle.physics.ucdavis.edu/workshops/TASI04/ schellman.pdf.
[53] Bending Particles. URL: http : / / cms . cern / detector / bending - particles.
[54] Y. Allkofer et al. “Design and performance of the silicon sensors for the CMS barrel pixel detector”. In: Nucl. Instrum. Methods Phys. Res., A 584.physics/0702092 (2008). Comments: 22 pages, 21 figures, pp. 25–41. URL: http://cds.cern.ch/record/1142546.
[55] Laura Borrello et al. Sensor Design for the CMS Silicon Strip Tracker. Tech. rep. CMS-NOTE-2003-020. Geneva: CERN, 2003. URL: http://cds. cern.ch/record/687861.
[56] CMS Collaboration. “Performance and operation of the CMS electromag- netic calorimeter”. In: Journal of Instrumentation 5.03 (2010), T03010. URL: http://stacks.iop.org/1748-0221/5/i=03/a=T03010.
[57] Bora Isildak. “Measurement of the differential dijet production cross sec- tion in proton-proton collisions at √s = 7 tev”. PhD thesis. Bogazici U., 2011. arXiv: 1308.6064 [hep-ex]. URL: https://inspirehep. net/record/1251416/files/arXiv:1308.6064.pdf.
[58] E. Cheu et al. Calorimetry in High Energy Physics: Proceedings of the Sev- enth International Conference. 1998. ISBN: 9789814545099. URL: https:// books.google.com.tw/books?id=aALQDgAAQBAJ.
[59] CMS Collaboration. “Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data”. In: Journal of Instrumentation 5.03 (2010), T03012. URL: http://stacks.iop.org/1748-0221/5/i= 03/a=T03012.
[60] Karl Jakobs. 8. Energy measurements in calorimeters. 2017. URL: http: / / portal . uni - freiburg . de / jakobs / dateien / vorlesungsdateien/particledetectors/kap8.
[61] The CMS collaboration. “The performance of the CMS muon detector in proton-proton collisions at √s = 7 TeV at the LHC”. In: Journal of Instru- mentation 8.11 (2013), P11002. URL: http://stacks.iop.org/1748- 0221/8/i=11/a=P11002.
[62] Sergio Cittolin, Attila Rácz, and Paris Sphicas. CMS The TriDAS Project: Technical Design Report, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger and data-acquisition project. Technical Design Report CMS. Geneva: CERN, 2002. URL: http://cds.cern.ch/record/578006.
[63] CMS Collaboration. CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems. Technical Design Report CMS. URL: http://cds. cern.ch/record/706847.
[64] CMS Collaboration. “Commissioning of the CMS High-Level Trigger with Cosmic Rays”. In: JINST 5 (2010), T03005. DOI: 10.1088/1748- 0221/5/03/T03005. arXiv: 0911.4889 [physics.ins-det].
[65] Florian Beaudette. “The CMS Particle Flow Algorithm”. In: Proceed- ings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013. 2013, pp. 295–304. arXiv: 1401.8155 [hep-ex]. URL: https://inspirehep.net/record/ 1279774/files/arXiv:1401.8155.pdf.
[66] Albert M Sirunyan et al. “Particle-flow reconstruction and global event description with the CMS detector”. In: (2017). arXiv: 1706 . 04965 [physics.ins-det].
[67] Wolfgang Adam et al. Reconstruction of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC. Tech. rep. CMS-NOTE-2005-001. Geneva: CERN, 2005. URL: https://cds.cern.ch/record/815410.
[68] Michael G. Albrow et al. “Tevatron-for-LHC Report of the QCD Working Group”. In: 2006. arXiv: hep-ph/0610012 [hep-ph]. URL: http:// lss.fnal.gov/cgi-bin/find_paper.pl?conf-06-359.
[69] Gavin P. Salam and Grègory Soyez. “A practical seedless infrared-safe cone jet algorithm”. In: Journal of High Energy Physics 2007.05 (2007), p. 086. URL: http://stacks.iop.org/1126-6708/2007/i= 05/a=086.
[70] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user man- ual”. In: The European Physical Journal C 72.3 (2012), p. 1896. ISSN: 1434- 6052. DOI: 10.1140/epjc/s10052-012-1896-2. URL: https: //doi.org/10.1140/epjc/s10052-012-1896-2.
[71] Ryan Atkin. “Review of jet reconstruction algorithms”. In: Journal of Physics: Conference Series 645.1 (2015), p. 012008. URL: http://stacks. iop.org/1742-6596/645/i=1/a=012008.
[72] Henning Kirschenmann. Jets at CMS and the determination of their energy scale. 2012. URL: http://cms.web.cern.ch/news/jets-cms-and- determination-their-energy-scale.
[73] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti- k t jet clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063. URL: http://stacks.iop.org/1126-6708/2008/i=04/a= 063.
[74] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh. “Techniques for improved heavy particle searches with jet substructure”. In: Phys. Rev. D 80 (5 2009), p. 051501. DOI: 10.1103/PhysRevD.80. 051501. URL: https://link.aps.org/doi/10.1103/PhysRevD. 80.051501.
[75] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh. “Re- combination algorithms and jet substructure: Pruning as a tool for heavy particle searches”. In: Phys. Rev. D 81 (9 2010), p. 094023. DOI: 10.1103/ PhysRevD.81.094023. URL: https://link.aps.org/doi/10. 1103/PhysRevD.81.094023.
[76] Jonathan M. Butterworth et al. “Jet substructure as a new Higgs search channel at the LHC”. In: Proceedings, 34th International Conference on High Energy Physics (ICHEP 2008): Philadelphia, Pennsylvania, July 30- August 5, 2008. 2008. arXiv: 0810.0409 [hep-ph]. URL: https:// inspirehep . net / record / 798300 / files / arXiv : 0810 . 0409 . pdf.
[77] David E. Kaplan et al. “Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks”. In: Phys. Rev. Lett. 101 (14 2008), p. 142001. DOI: 10.1103/PhysRevLett.101.142001. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.101.142001.
[78] CMS Collaboration. Performance of the b-jet identification in CMS. Tech. rep. CMS-PAS-BTV-11-001. Geneva: CERN, 2011. URL: https://cds. cern.ch/record/1366061.
[79] CMS Collaboration. Identification of double-b quark jets in boosted event topologies. Tech. rep. CMS-PAS-BTV-15-002. Geneva: CERN, 2016. URL: https://cds.cern.ch/record/2195743.
[80] CMS Collaboration. Identification of b quark jets at the CMS Experiment in the LHC Run 2. Tech. rep. CMS-PAS-BTV-15-001. Geneva: CERN, 2016. URL: https://cds.cern.ch/record/2138504.
[81] CMS Collaboration. Performance of b tagging at sqrt(s)=8 TeV in multijet, ttbar and boosted topology events. Tech. rep. CMS-PAS-BTV-13-001. Geneva: CERN, 2013. URL: https://cds.cern.ch/record/1581306.
[82] CMS Collaboration. “Measurement of b ̄b angular correlations based on secondary vertex reconstruction at √s = 7 TeV”. In: Journal of High Energy Physics 2011.3 (2011), p. 136. ISSN: 1029-8479. DOI: 10.1007/ JHEP03(2011)136. URL: https://doi.org/10.1007/ JHEP03(2011)136.
[83] Johan Alwall et al. “MadGraph 5: going beyond”. In: Journal of High Energy Physics 2011.6 (2011), p. 128. ISSN: 1029-8479. DOI: 10.1007/ JHEP06(2011)128. URL: https://doi.org/10.1007/ JHEP06(2011)128.
[84] J. Alwall et al. “The automated computation of tree-level and next-to- leading order differential cross sections, and their matching to parton shower simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2014)079. URL: https: //doi.org/10.1007/JHEP07(2014)079.
[85] Stefano Carrazza et al. “A compression algorithm for the combination of PDF sets”. In: Eur. Phys. J. C75 (2015), p. 474. DOI: 10.1140/epjc/ s10052-015-3703-3. arXiv: 1504.06469 [hep-ph].
[86] Jon Butterworth et al. “PDF4LHC recommendations for LHC Run II”. In: Journal of Physics G: Nuclear and Particle Physics 43.2 (2016), p. 023001. URL: http://stacks.iop.org/0954-3899/43/i=2/a=023001.
[87] Sayipjamal Dulat et al. “New parton distribution functions from a global analysis of quantum chromodynamics”. In: Phys. Rev. D 93 (3 2016), p. 033006. DOI: 10.1103/PhysRevD.93.033006. URL: https:// link.aps.org/doi/10.1103/PhysRevD.93.033006.
[88] L. A. Harland-Lang et al. “Parton distributions in the LHC era: MMHT 2014 PDFs”. In: The European Physical Journal C 75.5 (2015), p. 204. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-015-3397-6. URL: https: //doi.org/10.1140/epjc/s10052-015-3397-6.
[89] Richard D. Ball et al. “Parton distributions for the LHC run II”. In: Jour- nal of High Energy Physics 2015.4 (2015), p. 40. ISSN: 1029-8479. DOI: 10. 1007/JHEP04(2015)040. URL: https://doi.org/10.1007/ JHEP04(2015)040.
[90] Andy Buckley et al. “LHAPDF6: parton density access in the LHC pre- cision era”. In: The European Physical Journal C 75.3 (2015), p. 132. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-015-3318-8. URL: https: //doi.org/10.1140/epjc/s10052-015-3318-8.
[91] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer Physics Communications 191 (2015), pp. 159 –177. ISSN: 0010-4655. DOI: http://dx.doi.org/10.1016/j.cpc.2015.01.024. URL: http : / / www . sciencedirect . com / science / article / pii / S0010465515000442.
[92] V. Khachatryan et al. “Event generator tunes obtained from underlying event and multiparton scattering measurements”. In: The European Phys- ical Journal C 76.3 (2016), p. 155. ISSN: 1434-6052. DOI: 10.1140/epjc/ s10052-016-3988-x. URL: https://doi.org/10.1140/epjc/ s10052-016-3988-x.
[93] S. Agostinelli et al. “Geant4 - a simulation toolkit”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec- tors and Associated Equipment 506.3 (2003), pp. 250 –303. ISSN: 0168-9002. DOI: http://dx.doi.org/10.1016/S0168-9002(03)01368-8. URL: http://www.sciencedirect.com/science/article/pii/ S0168900203013688.
[94] Maxime Gouzevitch. CrossSectionsLHC/WED. 2016. URL: https : / / github . com / CrossSectionsLHC / WED / blob / master / KKGraviton _ Bulk / AnalysesTables / BulkGraviton _ yr4 _ 13TeV_kmpl0p5_hh4b.dat.
[95] Maxime Gouzevitch. CrossSectionsLHC/WED. 2016. URL: https : / / github . com / CrossSectionsLHC / WED / blob / master / Radion _ Bulk/AnalysesTables/BulkRadion_yr4_13TeV_NLO_LR_3TeV_ hh4b.dat.
[96] Recommended Jet Energy Corrections and Uncertainties for Data and MC. 2015. URL: https://twiki.cern.ch/twiki/bin/view/CMS/ JECDataMC#Recommended_for_Data.
[97] The CMS collaboration. “Determination of jet energy calibration and transverse momentum resolution in CMS”. In: Journal of Instrumentation 6.11 (2011), P11002. URL: http://stacks.iop.org/1748-0221/6/ i=11/a=P11002.
[98] “Status of the 8 TeV Jet Energy Corrections and Uncertainties based on 11 fb−1 of data in CMS”. In: (2013). URL: https://cds.cern.ch/ record/1545350.
[99] Pileup Removal Algorithms. Tech. rep. CMS-PAS-JME-14-001. Geneva: CERN, 2014. URL: https://cds.cern.ch/record/1751454.
[100] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The catchment area of jets”. In: Journal of High Energy Physics 2008.04 (2008), p. 005. URL: http://stacks.iop.org/1126-6708/2008/i=04/a=005.
[101] Matteo Cacciari and Gavin P. Salam. “Pileup subtraction using jet ar- eas”. In: Physics Letters B 659.1 (2008), pp. 119 –126. ISSN: 0370-2693. DOI: http://dx.doi.org/10.1016/j.physletb.2007.09.077. URL: http://www.sciencedirect.com/science/article/pii/ S0370269307011094.
[102] Andreas Hinzmann. Jet Identification. 2016. URL: https : / / twiki . cern.ch/twiki/bin/view/CMS/JetID#Recommendations_for_ 13_TeV_2015.
[103] Jesse Thaler and Ken Van Tilburg. “Identifying boosted objects with N- subjettiness”. In: Journal of High Energy Physics 2011.3 (2011), p. 15. ISSN: 1029-8479. DOI: 10.1007/JHEP03(2011)015. URL: https://doi. org/10.1007/JHEP03(2011)015.
[104] Jesse Thaler and Ken Van Tilburg. “Maximizing boosted top identifica- tion by minimizing N-subjettiness”. In: Journal of High Energy Physics 2012.2 (2012), p. 93. ISSN: 1029-8479. DOI: 10.1007/JHEP02(2012)093. URL: https://doi.org/10.1007/JHEP02(2012)093.
[105] Iain W. Stewart, Frank J. Tackmann, and Wouter J. Waalewijn. “N jetti- ness: an inclusive event shape to veto jets”. In: Phys. Rev. Lett. 105 (9 2010), p. 092002. DOI: 10.1103/PhysRevLett.105.092002. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.105.092002.
[106] CMS Collaboration. CMS luminosity measurement for the 2015 data-taking period. Tech. rep. CMS-PAS-LUM-15-001. Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2138682.
[107] CMS Collaboration. Search for massive resonances decaying into pairs of boosted W and Z bosons at √s = 13 TeV. Tech. rep. CMS-PAS-EXO-15- 002. Geneva: CERN, 2015. URL: https://cds.cern.ch/record/ 2117062.
[108] S. Ahuja et. al. “Search for heavy resonances decaying to a pair of Higgs bosons in four b quark final state in proton-proton collisions at √s = 13 TeV”. CMS Analysis Note 2015/287_v9, CERN. 2015.
[109] CMS Collaboration. “Jet energy scale and resolution in the CMS experi- ment in pp collisions at 8 TeV”. In: Journal of Instrumentation 12.02 (2017), P02014. URL: http://stacks.iop.org/1748-0221/12/i=02/a= P02014.
[110] CMS Collaboration. “Jet energy scale and resolution performances with 13TeV data”. In: (2016). URL: https://cds.cern.ch/record/ 2160347.
[111] Andrey Popov. Jet Energy Resolution. 2017. URL: https : / / twiki . cern.ch/twiki/bin/viewauth/CMS/JetResolution.
[112] A L Read. “Presentation of search results: the CL s technique”. In: Journal of Physics G: Nuclear and Particle Physics 28.10 (2002), p. 2693. URL: http: //stacks.iop.org/0954-3899/28/i=10/a=313.
[113] Nicholas Wardle. Documentation of the RooStats -based statistics tools for Higgs PAG. 2017. URL: https://twiki.cern.ch/twiki/bin/ viewauth/CMS/SWGuideHiggsAnalysisCombinedLimit.
[114] CMS Collaboration. “Precise determination of the mass of the Higgs bo- son and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”. In: Eur. Phys. J. C75.5 (2015), p. 212. DOI: 10.1140/epjc/s10052-015-3351-7. arXiv: 1412.8662 [hep-ex].
[115] Thomas Junk. “Confidence level computation for combining searches with small statistics”. In: Nucl. Instrum. Meth. A434 (1999), pp. 435–443. DOI: 10.1016/S0168-9002(99)00498-2. arXiv: hep-ex/9902006 [hep-ex].
[116] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics”. In: Eur. Phys. J. C71 (2011). [Erratum: Eur. Phys. J.C73,2501(2013)], p. 1554. DOI: 10.1140/epjc/s10052-011-1554- 0,10.1140/epjc/s10052-013-2501-z. arXiv: 1007.1727 [physics.data-an].
[117] Andrew J. Larkoski et al. “Soft drop”. In: Journal of High Energy Physics 2014.5 (2014), p. 146. ISSN: 1029-8479. DOI: 10.1007/JHEP05(2014) 146. URL: https://doi.org/10.1007/JHEP05(2014)146.
[118] S-S. Yu et. al. “Comparison of radion/2HDM heavy higgs/Zprime/RS/bulk gravitons X → hh → bbbb and X → WW → lvqq”. Diboson Meeting, CERN. 2015.
指導教授 余欣珊(Shin-Shan Yu) 審核日期 2017-11-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明