博碩士論文 103223004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.144.9.141
姓名 嚴羿淇(Yi-Chi Yen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以「添苯並三唑」剛硬片段為共軛架橋之有機光敏染料與高效能染敏太陽能電池
(Organic Sensitizers with a Rigid Dithienobenzotriazole-Based Spacer for High-Performance Dye-Sensitized Solar Cells)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含Benzimidazole之電子傳輸材料及其電激發光元件
★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發★ 有機薄膜電晶體高分子材料併環噻吩系列之開發
★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發
★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池
★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用電子豐盈與電子匱乏芳香環稠合而成之剛硬片段DTBZ (dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-d][1,2,3]triazole)作為雙極性非金屬系有機光敏染料之共軛架橋主體,引入不同的電子予體,如tripheneylamine (TPA)、9-(2-ethylhexyl)-9H-carbazole (CBZ)、4-(2-ethylhexyl)-4H-thieno[3,2-b]indole (TID),以及不同的共軛架橋延伸片段,如thiophene (T)、3-n-hexyl-thiophene (HT),並以2-cyanoacrylic acid作為電子受體兼錨基,本研究成功開發出新穎D-A′-A型光敏化染料 (YC系列染料)。本研究也對染料進行了光物理、電化學性質測量,以及製成染料敏化型太陽能電池進行測試,並搭配理論計算探討。
YC系列染料在362 nm到550 nm的光譜範圍有寬廣的吸收,且擁有不錯的消光係數,最高的消光係數達到~54800 M-1 cm-1。由於DTBZ的共面性,染料分子在TiO2上有相當程度的J-型堆疊,使得分子的吸收延伸至較長的波段。在標準AM 1.5光照度下,YC系列元件之光電轉換效率在5.82%到8.51%之間,最佳的YC-5 (8.51%)且超越標準品N719元件(8.12%)。從IPCE光譜可以很清楚看出J-型堆疊對於光電流的增益有很重要的貢獻,若加入5 mM的共吸附劑 (CDCA) 適度抑制堆疊導致的激態分子淬息,但保存長波段的光吸收,可將效率更提升至9.1%,且在1/4個標準太陽光照度下,其效率更可提升至10.56%。
摘要(英) New D-A′-A type sensitizers (YC dyes), comprising different arylamine (tripheneylamine, 9-(2-ethylhexyl)-9H-carbazole or 4-(2-ethylhexyl)-4H-thieno[3,2-b]indole) as the electron donor, dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-d][1,2,3]triazole (DTBZ) with fused electron rich and electron deficient aromatic units as the rigidified π-conjugated spacer, and 2-cyanoacrylic acid as both the acceptor and anchor, have been synthesized and characterized. Thiophene or 3-n-hexyl-thiophene was also introduced to extend the conjugation. In addition to the investigation of the photophysical, electrochemical properties, theoretical computations were also carried out on these new dyes. Dye-sensitized solar cells were fabricated using these dyes as the senzitizers, and relevant physical measurements were conducted.
The YC sensitizers displayed broad absorption spectra covering the range of 362 to 550 nm, with the highest molar extinction coefficient up to ~54,800 M-1cm-1. Because of the planarity nature of DTBZ, the dyes have J-aggregation when adsorbed on the TiO2 surface, resulting extended absorption in the longer wavelength region. The light-to-electricity conversion efficiencies of the dye-sensitized solar cells (DSSCs) fabricated from the dyes range from 5.82 to 8.51% under simulated AM 1.5 G illumination, and the best cell efficiency (YC-5) surpasses that (8.12%) of the standard DSSC based on N719 ((bis(tetrabutyl-ammonium)-cis-di(thiocyanato)-N,N′-bis(4-
carboxylato-4′-carboxylic acid-2,2′-bipyridine)ruthenium(II)). The IPCE spectra clearly indicates that important contribution of J-aggregation of the dyes to the photocurrents. With addition of 5 mM of CDCA (chenodeoxycholic acid) as the coadsorbent to alleviate excited state quenching while retaining the gain at the longer wavelength region due to dye-aggregation, the best efficinecy was further boosted to 9.10%. Under 25% sunlight illumination, the efficiency reached 10.56%.
關鍵字(中) ★ 染料敏化太陽能電池
★ 有機染料
★ 剛硬片段
關鍵字(英) ★ dye-sensitized solar cells
★ organic sensitizers
★ rigid
論文目次 Abstract i
摘要 ii
目錄 iii
圖目錄 iv
表目錄 viii
附圖目錄 viii
第一章、緒論 1
1-1、前言 1
1-2、太陽能光譜介紹 1
1-3、太陽能電池介紹 2
1-3-1、矽晶類太陽能電池 3
1-3-2、化合物太陽能電池 4
1-3-3、有機染料太陽能電池 5
1-3-4、鈣鈦礦太陽能電池 (Perovskite Solar Cells) 9
1-3-5、量子點太陽能電池 (Quantum Dot Sensitized Solar Cells) 10
1-4、有機染料敏化太陽能電池 10
1-4-1、有機染料敏化太陽能電池元件組成 10
1-4-2、有機染料敏化太陽能電池運作機制 13
1-4-3、有機染料敏化太陽能電池參數介紹 15
1-5、研究動機 17
第二章、實驗方法與過程說明 24
2-1、實驗儀器 24
2-2、實驗藥品 25
2-3、實驗步驟 28
2-4、太陽能電池元件製作 57
第三章、結果與討論 58
3-1、YC-1至YC-8系列染料 58
3-1-1、染料之合成方法 58
3-1-2 、化合物生成之關鍵反應 59
3-2、YC-1至YC-8系列染料之物理性質 64
3-2-1、光物理性質 64
3-2-2、電化學性質 68
3-3、YC-1至YC-8元件效率與相關量測之探討 71
3-3-1、YC-1至YC-8染料元件之效率表現探討 71
3-3-2、YC-1至YC-8染料元件之EIS、IMVS性質探討 75
3-3-3、YC-1至YC-8染料元件之charge extraction量測探討 77
3-3-4、YC-1至YC-8染料元件之效率與共吸附劑 78
3-4、理論計算 83
第四章、結論 90
參考文獻 91
附錄 97
參考文獻 1. H. Kallmans; M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys., 1958, 30, 585.
2. M. A. Green; K. Emery; Y. Hishikawa; W. Warta; E. D. Dunlop, “Proceeding of the 21st IEEE Photovoltaic Specialists Conference”, Orlando, USA: IEEE Publication, 1990.
3. D. M. Chapin; C. S. Fuller; G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., 1954, 25, 676.
4. K. Masuko; M. Shigematsu; T. Hashiguchi; D. Fujishima; M. Kai; N. Yoshimura; T. Yamaguchi; Y. Ichihashi; T. Mishima; N. Matsubara; T. T. Yamanishi; T. Takahama; M. Taguchi; E. Maruyama; S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell”, IEEE J. Photovoltaics, 2014, 4, 1433.
5. W. Deng; D. Chen; Z. Xiong; P. J. Verlinden; J. W. Dong; F. Ye; H. Li; H. J. Zhu; M. Zhong; Y. Yang; Y. F. Chen; Z. Q. Feng, “Altermatt P. 20.8% PERC solar cell on 156 mm x 156 mm p-type nulticrystalline silicon substrate”, IEEE J. Photovoltaics, 2016, 6, 3.
6. T. Matsui; H. Sai; T. Suezaki; M. Matsumoto; K. Saito; I. Yoshida; M. Kondo, “Development of highly stable and efficient amorphous silicon based solar cells”, Proc. 28th European Photovoltaic Solar Energy Conference, 2013.
7. 郭明村, 「薄膜太陽能電池發展近況」, 工業材料雜誌, 2003, 203, 138.
8. National Renewable Energy Laboratory. NREL Best Research Cell Efficiencies Chart; http://www.nrel.gov/ncpv/images/efficiency_ chart.jpg.
9. F. Hurd; R. Livingston,”The Quantum Yields of Some Dye-sensitized Photooxidations”, J. Phys. Chem., 1940, 44, 865.
10. G. Oster; J. S. Bellin; R. W. Kinball; M. E. Scharder, “Dye Sensitized Photoöxidation”, J. Am. Chem. Soc., 1959, 81, 5095.
11. H. Tsubomura; M. Mastsumumuera; Y. Nomura; T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402.
12. B.O. Regan; M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
13. M.K. Nazeeruddin; A. Key; I. Rodicio; R. Humphry-Baker; E. Mueller; P. Liska; N. Vlachopoulos; M.Graetzel, “Conversion of light to electricity bycis-X2bis(2,2′-bipyridyl-4,4′-
dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
14. M. K. Nazeeruddin; F. D. Angelis; S. Fantacci; A. Selloni; G. Viscardi; P. Liska; S. Ito; B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J .Am. Chem. Soc., 2005, 127, 16835.
15. M. K. Nazeeruddin;P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphry-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613.
16. P. Wang; S. M. Zakeeruddin; J. E. Moser; M. K. Nazeeruddin; T. Sekiguchi and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nat. Mater., 2003, 2, 402.
17. F. Gao; Y. Wang; D. Shi;J. Zhang; M.Wang; X. Jing; R. Humphry-Baker; P. Wang; S. M. Zakeeruddin; M. Grätzel, “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells”, J. Am. Chem. Soc., 2008, 130, 10720.
18. C. Y. Chen; M. Wang; J. Y. Li; N. Pootrakulchote; L. Alibabaei; C. Ngoc-le; J. D. Decoppet; J. H. Tsai; C. Grätzel; C. G. Wu; S. M. Zakeeruddin and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano., 2009, 3, 3103.
19. A. Yella; H. W. Lee; H. N. Tsao; C. Yi; A. K. Chandiran; M. K. Nazeeruddun; E.W. Diau; C. Y. Yeh; S. M. Zakeeruddin; M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science, 2011, 334, 629.
20. S.Mathew; A. Yella; P. Gao; R. Humphry-Baker; B. F. Curchod; N. Ashari-Astani; I. Tavernelli; U. Rothlisberger; M. K. Nazeeruddin; M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat.Chem., 2014, 6, 242.
21. Z. Yao; H. Wu; Y. Li; J. Wang;J. Zhang;M. Zhang; Y. Guo and P. Wang, “Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity”, Energy Environ. Sci., 2015, 8, 3192.
22. K. Kakiage; Y. Aoyama; T. Yano; K. Oya; J. I. Fujisawab and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894
23. (a) A. R. bin Mohd Yusoff; M. K. Nazeeruddin, “Organic Halide Lead Pervoskites for Photovoltaic Applictions”, J. Phys. Chem. Lett., 2016, 7, 851. (b) H. Snaith, “Pervoskites: the Emergence of a New Era for Low-CostHigh-Efficiency Solar Cells”, J. Phys. Chem. Lett., 2013, 4, 3623.
24. (a) G. H. Carey; A. L. Abdelhady; Z. Ning; S. M. Thon; O. M. Bakr and E. H. Sargent, “Colloidal Quantum Dot Solar Cells”, Chem. Rev., 2015, 115, 12732. (b) W. Li and X. Zhong, “Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells”, J. Phys. Chem. Lett., 2015, 6, 796. (c) J. Wang, Y. Li, Q. Shen; T. Izuishi; Z. Pan; K. Zhaoa and X. Zhong, “Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%”, J. Mater. Chem. A, 2016, 4, 877.
25. N. Robertson, “Optimizing dyes for dye-sensitized solar cells”, Angew. Chem. Int. Ed., 2006, 45, 2338.
26. Md. K. Nazeeruddin;R. Humphry-Baker; P. Liska and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981.
27. W. H. Zhu; Y. Z. Wu; S. Wang; W. Q. Li; X. Li; J. Chem; Z. S. Wang and H. Tian, “Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response”, Adv. Funct. Mater., 2011, 21, 756.
28. M. Velusamy; K. R. Justin Thomas; J. T. Lin; Y. C. Hsu and K. C. Ho, “Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells”, Org. Lett., 2005, 7, 1899.
29. Y. Z. Wu; W. H. Zhu; S. M. Zakeeruddin and M. Grätzel, “Insight into D-A-π-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 2015, 7, 9307.
30. H. H. Chou; Y. C. Chen; H. J. Huang; T. H. Lee; J. T. Lin;C.Tsai; K. Chen, “High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole”, J. Mater. Chem., 2012, 22, 10929.
31. Y. S. Yeng; C. T. Lee; C. Y.Hsu; H.-H.Chou; Y. C.Chen; J. T. Lin, “Benzotriazole-Containing D−π−A Conjugated Organic Dyes for Dye-Sensitized Solar Cells”, Chem. Asian J, 2013, 8, 809.
32. J.S. Ni; J.H. You; W.I. Hung; W.S. Kao; H.H. Chou; J.T. Lin, “Organic dyes incorporating the dithieno[3′ ,2′ :3,4;2″ ,3″ :5,6]benzo[1,2-c]furazan moiety for dye-sensitized solar cells”, ACS Appl.Mater. Interfaces, 2014, 6, 22612.
33. J. S. Ni;W. S. Kao; H. J. Chou and J. T. Lin, “Organic Dyes Incorporating the Dithieno[3,2-f:2′,3′-h]quinoxaline Moiety for Dye-Sensitized Solar Cells”,ChemSusChem,2015, 8, 2932.
34. Z. S. Huang; X. F. Zang; T. Hua; L. Y. Wang; H. Meier and D. Cao, “2,3-Dipentyldithieno[3,2‐f:2′,3′‐h]quinoxaline-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells: Effect of π‐Bridges and Electron Donors on Solar Cell Performance”, ACS Appl. Mater. Interfaces, 2015, 7, 20418.
35. Z. S. Huang; H. L. Feng; X. F. Zang; Z. Iqbal; H. Zeng; D. B. Kuang; L. Y. Wang; H. Meierd and D. Cao, “Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells”, J. Mater. Chem. A, 2014, 2, 15365.
36. J. S. Ni; Y. C. Yen and J. T. Lin, “Organic dyes with a fused segment comprising benzotriazole and thieno[3,2-b]pyrrole entities as the conjugated spacer for high performance dye-sensitized solar cells”, Chem. Commun., 2015, 51, 17080.
37. A. F. Arroyave; C. A. Richard and J. R. Reynolds, “Efficient Synthesis of Benzo[1,2-b:6,5-
b′]dithiophene-4,5-dione (BDTD) and its chemical transformations into precursors for π-conjugated materials”, Org. Lett., 2012, 14, 6138.
38. N. Miyaura; K. Yamada; H. Suginome; A. Suzuki, “Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-
catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes”, J. Am. Chem. Soc., 1985, 107, 972.
39. D. Milstein; J. K. Stille, “A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium”, J.Am.Chem.Soc., 1978, 100, 3636.
40. O. Meth-Cohn; S. P. Stanforth, “The Vilsmeier-Haack reaction. In: Trost BM, Fleming I, eds. New York: Pergamon Press”, Comp. Org. Synth., 1991, 2, 777.
41. E. Knoevenagel, “Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine”, Ber. Dtsch. Chem. Ges., 1898, 31, 2596.
42. F. Paul; J. Patt; J. F. Hartwig, “Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides”, J. Am. Chem. Soc., 1994, 116, 5969.
43. G. Zhang; H. Bala; Y. Cheng; D. Shi; X. Lv; Q. Yu; P. Wang, “High efficiency and stable dye-sensitized solar cells with an organic chromophores featuring a binary π-conjugated spacer”, Chem. Commum., 2009, 2198.
44. Z. Wang; M. Liang; L. Wang; Y. Hao; C. Wang; Z. Sun; S. Xue, “New triphenylamine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for iodine-free dye-sensitized solar cells”, Chem. Commun., 2013, 49, 5748.
45. Y. Yang; Y. S. Yen; Y. C. Hsu, H. H. Chou, J. T. Lin, “Organic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar CellsOrganic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar Cells”, Org. Lett., 2010, 12, 16.
46. S. L. Li; K. J. Jiang; K. F. Shao; L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells”, Chem. Commun., 2006, 2792.
47. K. Hara; T. Sato; R. Katoh; A. Furube; Y. Ohga; A. Shinpo; S. Suga; K. Sayama; H. Sugihara; H. Arakawa, “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2003, 107, 597.
48. K. Hara; Y. Tachibana; Y. Ohga; A. Shinpo; S. Suga; K. Sayama; H. Sugihara; H. Arakawa, “ Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 2003, 77, 89.
49. P. Gao; H. N. Tsao; M. Gratel and M. K. Nazeeruddin, “Organic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar Cells”, Org. Lett., 2012, 14, 4330.
50. X. Wang; L. Guo; P. F. Xia; F. Zheng; M. S. Wong; Z. Zhu, “Dye-sensitized solar cells based on organic dyes with naphtho[2,1-b:3,4-b′]dithiophene as the conjugated linker”, J. Mater. Chem. A, 2013, 1, 13328.
51. Q. Feng; X. Jia; G. Zhou and Z. S. Wang, “A hydride-ligated dysprosium single-molecule magnet”, Chem. Commun., 2013, 49, 7445.
52. R. C. Hiborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that”, Am. J. Phys., 1982, 50, 982.
指導教授 林建村、陳銘洲(Jiann-T′suen Lin) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明