博碩士論文 103223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.189.171
姓名 白家蕙(Chia-Hui Bai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要是分別利用三嵌段共聚高分子Pluronic F127及 Pluronic P123作為模板,成功地在低酸量之條件下以直接共聚合成法進行合成,分別合成具有羧酸與胺基官能基之三維立方結構之大孔洞SBA-16。
合成方面分為兩大部分,第一部分是以F127及P123當作模板,以tetraethyl orthosilicate (TEOS) 和CES (carboxyethylsilanetriol sodium salt) 當作共同矽源,在低酸量的條件下以直接共聚合成法合成出具大孔洞的中孔洞材料LP-S16C-x,且羧酸官能基含量可高達40%。第二部分同樣是以F127及P123當作模板,利用tetraethyl orthosilicate (TEOS) and 3-aminopropyl)triethoxysilane (APTES)為共同矽源,合成出含有胺基官能基的LP-S16N材料,其胺基官能基含量僅可達到5 %。並利用X-ray 粉末繞射、固態核磁共振光譜、等溫氮氣吸脫附、熱重分析儀、穿透式電子顯微鏡及掃描式電子顯微鏡等儀器鑑定材料的結構,同時也鑑定官能基含量對孔洞性質的影響。
應用方面,將分別不同的官能基之材料應用在蛋白質分子的吸附,測試是否為可做為生化分子良好的儲存處。發現具胺基官能基的材料有助於提升牛血清白蛋白的吸附量,而具羧酸官能基的材料對於血紅素的吸附效果較好,並且套入等溫吸附模式來描述中孔洞材料吸附蛋白質的系統,並進一步探討吸附動力學。接著將材料應用到選擇性蛋白質吸附,探討在不同的pH值環境下牛血清白蛋白、血紅素、溶菌酶,所產生的選擇性吸附效果。 
摘要(英) The well-ordered cubic large-pore mesoporous silicas SBA-16 (Im3m) were successfully synthesized via co-condensation under acidic conditions using Pluronic F127 and Pluronic P123 as template.
One is carboxylic acid functionalized, synthesized by co-condensation of two different silane precursors, that is, tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES), under acidic condition using F127 and P123 as template. The maximum loading of CES contents into the pore wall without degrading the Im3m mesostucture was up to 40%. These materials were denoted as LP-S16C-x, where x is the mole ratio of carboxylic acid groups. The other is synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and 3-aminopropyl)triethoxysilane (APTES) under same condiction like LP-S16C-x, and is called LP-S16N.
In this study, the synthesized materials were characterized by powder X-ray diffraction(XRD), nitrogen sorption measurement, thermogravimetric analysis (TGA), 13C CP-MAS NMR, 29Si MAS NMR, fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM).
In adsorption experiment, the prepared carboxylic acid and amine functionalized cubic mesoporous silicas were used as suitable adsorbents for protein adsorption (bovin serum albumin and hemoglobin). The adsorption processes were carefully studied with differernt factors. The prepared adsorbents showed an excellent adsorption capacity due to well-ordered pore structures. The isotherm models and kinetic models properties were analyzed to describe the adsorption behavior of the prepared materials. Moreover, We studied the selectively protein adsorption of bovin serum albumin, hemoglobin, and lysozyme for a range of different pH values.
關鍵字(中) ★ 大孔洞
★ 中孔洞矽材
★ 蛋白質吸附
關鍵字(英) ★ large-pore
★ mesoporous silica
★ protein adsorption
論文目次 中文摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1中孔洞二氧化矽分子篩 1
1-2界面活性劑之簡介 4
1-2-1界面活性劑結構與種類介紹 4
1-2-2共聚高分子 (Block copolymer) 6
1-2-3微胞的形成與結構 7
1-2-4界面活性劑與矽氧化物的交互作用 10
1-3 表面修飾官能基之中孔洞材料 13
1-4相關文獻回顧 16
1-4-1中孔洞材料SBA-16合成與介紹 16
1-4-2表面修飾羧酸官能基之中孔洞材料 17
1-4-3表面修飾胺基官能基之中孔洞材料 21
1-4-4中孔洞材料吸附蛋白質之簡介 27
1-5研究動機與目的 29
第二章 實驗部分 30
2-1實驗藥品 30
2-2實驗步驟 31
2-2-1合成具羧酸官能基之LP-S16C-x 31
2-2-2以硫酸溶液裂解孔洞中的模板 32
2-2-3合成具胺基官能基之LP-S16N 32
2-2-4以後修飾法合成具胺基官能基之LP-S16N 33
2-2-5以溶劑萃取法移除LP-S16N孔洞中的模板 33
2-2-6蛋白質檢量線之製作 33
2-2-7中孔洞材料在不同反應時間及pH值下之蛋白質吸附實驗 34
2-2-8中孔洞材料在不同pH值及初始濃度之蛋白質吸附實驗 35
2-2-9蛋白質釋放實驗 35
2-2-10不同pH值下之選擇性蛋白質吸附實驗 35
2-3 實驗設備 36
2-3-1實驗合成設備 36
2-3-2 實驗鑑定儀器 36
2-4 鑑定方法 38
2-4-1 同步輻射光束線 (NSRRC Beam Line) 38
2-4-2 X射線粉末繞射 (Powder X-Ray Diffractometer) 39
2-4-3 氮氣吸脫附等溫曲線、表面積與孔洞特性之鑑定 40
2-4-4傅立葉紅外線吸收光譜儀 (Fourier Transform Infrared Spectrometer;FTIR) 45
2-4-5 熱重分析儀 (Thermogravimetric Analyzer;TGA) 46
2-4-6低真空掃描式電子顯微鏡 (Scanning Electron Microscope;SEM) 48
2-4-7穿透式電子顯微鏡 (Transmission Electron Microscope;TEM) 49
2-4-8 固態核磁共振儀 (Solid State Nuclear Magnetic Resonance;Solid State NMR) 51
2-4-9紫外光-可見光光譜儀 (UV / Vis Spectrometer) 59
第三章 結果與討論 61
3-1合成不同矽源比例之中孔洞材料 61
3-1-1 LP-SBA-16系列XRD 61
3-1-2 13C CP/MAS NMR鑑定 63
3-1-3等溫氮氣吸脫附鑑定 66
3-1-4 29Si MAS NMR鑑定 70
3-1-5 FT-IR紅外線光譜 74
3-1-6 TGA 熱重分析 76
3-1-7 SEM影像 78
3-1-8 TEM影像 81
3-1-9 表面電位 84
3-2中孔洞材料吸附蛋白質之吸附實驗 86
3-2-1在不同反應時間吸附蛋白質之效果 86
3-2-2蛋白質初始濃度對中孔洞材料吸附之影響 88
3-2-3蛋白質之釋放實驗 93
3-3 中孔洞材料吸附蛋白質後之性質鑑定 95
3-3-1 XRD繞射圖譜 95
3-3-2 等溫吸脫附圖 98
3-3-3 吸附等溫模式 103
3-3-4動力學吸附探討 115
3-3-5分子內擴散模型之探討 120
3-4選擇性蛋白質吸附實驗 122
第四章 結論 124
參考文獻 125
第五章 附錄 136
5-1 實驗步驟 136
5-1-1利用LP-S16C-x 吸附銅金屬製備銅金屬顆粒 136
5-1-2利用LP-S16C-x 對4-Nitrophenol進行催化還原反應 136
第六章 結果與討論 137
6-1 LP-S16C-x-Cu-0.0175之XRD結果 137
6-2 TEM影像 139
6-3 LP-S16C-x-Cu-y催化還原4-Nitrophenol 140
參考文獻 (1) Y. Hao, Y. Chong, S. Li, and H. Yang, Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(2) I.-S. Nielsen, E. Taarning, K. Egeblad, R. Madsen, and C.-H. Christensen, Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst, Catal. Lett., 2007, 116, 35-40.
(3) C.-S. Chen, C.-C. Chen, C.-T. Chen, and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid group, Chem. Commun., 2011, 47, 2288-2290.
(4) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao, and K.-W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chem. Eur. J., 2013, 19, 6358-6367.
(5) Z. Yan, S. Tao, J. Yin, and G. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(6) Y. Zhai, Y. Dou, X. Liu, B. Tu, and D. Zhao, One-pot synthesis of magnetically separable ordered mesoporous carbon, J. Mater. Chem., 2009, 19, 3292-3300.
(7) T. Roussel, R. J.-M. Pellenq, M. Bienfait, C. Vix-Guterl, R. Gadiou, F. Béguin , and M. Johnson, T Thermodynamic and Neutron Scattering Study of Hydrogen Adsorption in Two Mesoporous Ordered Carbons, Langmuir, 2006, 22, 4614-4619.
(8) Z. Wu, Y. Yang, D. Gu, Y. Zhai, D. Feng, Q. Li, B. Tu, P.-A. Webley, D. Y. Zhao, Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties, Top Catal, 2009, 52, 12–26.
(9) S.-M. Solberg, and C.-C. Landry, Adsorption of DNA into Mesoporous Silica, J. Phys. Chem. B, 2006, 110, 15261-15268.
(10) Y. Hu, Z. Zhi, Q. Zhao, C. Wu, P. Zhao, H. Jiang, T. Jiang, S. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous Mesoporous Mater., 2012, 147, 94-101.
(11) M.-S. Bhattacharyy, P. Hiwale, M. Piras, L. Medda, D. Steri, M. Piludu, A. Salis, and M. Monduzzi, Lysozyme Adsorption and Release from Ordered Mesoporous Materials, J. Phys. Chem. C, 2010, 114, 19928-19934.
(12) A. Vinu, K. Z. Hossian, P. Srinivasu, M. Miyahara, S. Anandan, N. Gokulakrishnan, T. Mori, K. Arigab, and V. V. Balasubramanian, Carboxy-mesoporous carbon and its excellent adsorption capability for proteins, J. Mater. Chem., 2007, 17, 1819-1825.
(13) J. Deere , E. Magner, J. G. Wall, and B. K. Hodnett, Adsorption and activity of cytochrome c on mesoporous silicates, Chem. Commun., 2001, 465-465.
(14) Z. Zhou, and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 38943912.
(15) Z. Li, J.-C. Barnes, A. Bosoy, J. Fraser Stoddart, and J.-I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev., 2012, 41, 2590–2605.
(16) J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
(17) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
(18) F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed., 2006, 45, 3216.
(19) T. A. Fayed, M. H. Shaaban, M. N. El-Nahass, and F. M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Biol. Sci., 2014, 1, 74-79.
(20) C. Namasivayam, and D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes and Pigments, 2002, 54, 47-58.
(21) C. Brasquet, and P. Le-Cloirec, Adsorption onto activated carbon fibers: application to water and air treatments, Carbon, 1997, 35, 1307-1313.
(22) N.-K. Raman , M.-T. Anderson , and C. J. Brinker, Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas, Chem. Mater., 1996, 8, 1682–1701
(23) J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta, 1977, 470, 185.
(24) G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev., 2002, 102, 4093-4138.
(25) B. Chu, Structure and dynamics of block copolymer colloids, Langmuir, 1995, 11, 414-421.
(26) M. Almgren, W. Brown, and S. Hvidt, Self-aggregation and phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci., 1995, 273, 2-15.
(27) P. Alexandridis, J.-F. Holzwarth, and T.-A. Hatton, Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(28) D.-F. Evans, and H. Wennerström, The Colloidal Domain: Where physics, chemistry, biology, and technology meet, 2nd Edition, Wiley, 1999, 2, 193-197.
(29) D.-Y. Zhao, Q.-S. Huo, J.-L. Feng, B.-F. Chmelka, and G.-D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(30) 簡振龍, 陰/陽離子界面活性劑的混合增效作用之研究, 2000.
(31) C.-F. Karayigitoglu, M. Tata, V.-T. John, and G.-L. McPherson, Modifications of CdS nanoparticle characteristics through synthesis in reversed micelles and exposure to enhanced gas pressures and reduced temperatures, Colloids Surf., A, 1994, 82, 151-162.
(32) G.-H. Findenegg, Intermolecular and surface forces, Academic Press, 1986, 90, 1241-1242.
(33) K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Surfactants and polymers in aqueous solution, J. Synthetic. Lubric, 2004, 20, 367-370.
(34) G. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(35) U. Schubert, and N. Husing, Synthesis of inorganic materials, Wiley, 2011, chapter 4.
(36) Z. Yan, S.-Y. Tao, J.-X. Yin, and G.-T. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(37) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J.-R. Deka, S.-H. Liao, and K.C.-W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chem. Eur. J., 2013, 19, 6358-6367.
(38) C.-S. Chen, C.-C. Chen, C.-T. Chen, and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(39) A. Arencibia, J. Aguado, and J.-M. Arsuaga, Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury, Appl. Surf. Sci., 2010, 256, 5453-5457.
(40) S. Wang, D.-G. Choi, and S.-M. Yang, Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange, Adv. Mater., 2002, 14, 1311-1314.
(41) F.-R. Wang, J.-Q. Yang, and K.-B. Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A, Anal. Chim. Acta, 2009, 638, 23-28.
(42) A. Stein, B.-J. Melde, and R.-C. Schroden, Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age, Adv. Mater., 2000, 12, 1403-1419.
(43) N. Hao, L. Han, Y.-X. Yang, H.-T. Wang, P.-A. Webley, and D.-Y. Zhao, A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption, Appl. Surf. Sci., 2010, 256, 5334-5342.
(44) D.-A. Loy, Sol-gel processing of hybrid organic-inorganic materials based on polysilsesquioxanes, Wiley, 2006.
(45) T.-W. Kim, R. Ryoo, M. Kruk, K.- P. Gierszal, M. Jaroniec, S. Kamiya, and O. Terasaki, Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time, J. Phys. Chem. B, 2004, 108, 11480–11489.
(46) P. Zhang, Z. Wu, N. Xiao, L. Ren, X. Meng, C. Wang, F. Li, Z. Li, and F.-S. Xiao, Ordered Cubic Mesoporous Silicas with Large Pore Sizes Synthesized via
High-Temperature Route, Langmuir, 2009, 25, 13169–13175.
(47) Z. Yan, S. Tao, J. Yin, and G. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(48) C. Lei, Y. Shin, J. Liu, and E.-J. Ackerman, Entrapping Enzyme in a Functionalized Nanoporous Support, J. Am. Chem. Soc., 2002, 124, 11242–11243.
(49) Q. Tang, Y. Xu, D. Wu, and Y. Sun, A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine, J. Solid State Chem., 2006, 179, 1513–1520.
(50) L. Han, Y. Sakamoto, O. Terasaki, Y. Lia, and S. Che, and Y. Suna, Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem., 2007, 17, 1216–1221.
(51) W.-C. Chang, J.R. Deka, H.-Y. Wu, F.-K. Shieh, S.-Y. Huang, and H.-M. Kao, Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal., B, 2013, 142, 817-827.
(52) D. Saikia, Y.-Y. Huang, C.-E. Wu, and H.-M. Kao, Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol, RSC Adv., 2016, 6, 35167–35176.
(53) D.-J. Macquarrie, Direct preparation of organically modified MCM-type materials. Preparation and characterisation of arninopropyl-MCM and 2-cyanoethyl-MCM, Chem. Commun., 1996, 1961-1962.
(54) D.-J. Macquarrie, and D.-B. Jackson, Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica, Chem. Commun., 1997, 1781-1782.
(55) S. Zheng, L. Gao, and J. Guo, Synthesis and Characterization of Functionalized MCM-41 with Copper` and Manganese`Phenanthroline Complexes, J. Solid State Chem., 2000, 152, 447-452.
(56) S. Che1, A.- E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi, Nature Mater., 2003, 2, 801-805.
(57) E. R. Leite, J. A. Varela, E. Longoa and C. A. Paskocimasa, Influence of Polymerization on the Synthesis of SrliO3: Part II. Particle and Agglomerate Morphologies, Ceram. Int., 1995, 21, 153-I 58 .
(58) T. Yokoi, H. Yoshitake, and T. Tatsumi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes, J. Mater. Chem., 2004, 14,
951- 957.
(59) X. Wang, K. S. K. Lin, J. C. C. Chan, and S. Cheng, J. Phys. Chem. B, 2005, 109, 1763-1769.
(60) S.-W. Song, K. Hidajat and S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on
Matrix-Drug Interactions, Langmuir, 2005, 21, 9568-9575.
(61) L. Han, J. Ruan, Y. Li, O. Terasaki, and S. Che, Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica, Chem. Mater., 2007, 19, 2860-2867.
(62) S. B. Hartono, S. Z. Qiao, K. Jack, B. P. Ladewig, Z. Hao, and G. Q. Lu, Improving Adsorbent Properties of Cage-like Ordered Amine Functionalized
Mesoporous Silica with Very Large Pores for Bioadsorption, Langmuir, 2009, 25, 6413–6424.
(63) A. Nomura and C. W. Jones, Amine-Functionalized Porous Silicas as Adsorbents for Aldehyde Abatement, ACS Appl. Mater. Interfaces, 2013, 5, 5569−5577.
(64) S. Nayab, A. Farrukh, Z. Oluz, E. Tuncel, S. R. Tariq, H. U. Rahman,
K. Kirchhoff, H. Duran, and B. Yameen, Design and Fabrication of Branched Polyamine Functionalized Mesoporous Silica: An Efficient Absorbent for Water Remediation, ACS Appl. Mater. Interfaces 2014, 6, 4408−4417.
(65) M. M. Ayad, N. A. Salahuddin, A. A. El-Nasr, and N. L. Torad, Amine-functionalized mesoporous silica KIT-6 as a controlled release drug delivery carrier, Microporous and Mesoporous Materials, 2016, 229, 166-177.
(66) Z. Wu, and D. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun., 2011, 47, 3332-3338.
(67) S. Hudson, J. Cooney, and E. Magner, Proteins in mesoporous silicates, Angew. Chem. Int. Ed., 2008, 47, 8582-8594.
(68) A. Vinu, M. Miyahara, and K. Ariga, Biomaterial Immobilization in Nanoporous Carbon Molecular Sieves: Influence of Solution pH, Pore Volume, and Pore Diameter, J. Phys. Chem. B, 2005, 109, 6436-6441.
(69) C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu, and H.-M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes, J. Hazard. Mater., 2016, 309, 236–248.
(70) C.-M. Yang , B. Zibrowius , W. Schmidt , and F. Schüth, Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15, Chem. Mater., 2004, 16, 2918–2925.
(71) F. Cuoq, A. Masion, J. Labille, J. Rose, F. Ziarelli, B. Prelot, and J.-Y. Bottero, Preparation of amino-functionalized silica in aqueous conditions, Appl. Surf. Sci., 2013, 266, 155– 160.
(72) S. Brunauer, L.-S. Deming, W.-E. Deming, and E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 1940, 62, 1723-1732.
(73) 王奕凱, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 博海堂文化公司, 1993.
(74) E.-P. Barrett, L.-G. Joyner, and P.-P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
(75) S. J. Gregg, K. S. W. Sing, and H. W. Salzberg, Adsorption surface area and porosity, J. Electrochem. Soc., 1967, 114, 279.
(76) G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of heterogeneous catalysis, 1997.
(77) www.slvs.tc.edu.tw/125/20120919020307.
(78) 劉銘璋, 林岱瑋, 王漢松, and 張秋玲, 第七章熱分析, 台灣大學化學系.
(79) 羅聖全, 電子顯微鏡介紹-掃描式電子顯微鏡.
(80) 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用, The Chinese Chem. SOC., Taipei, 2004, 62, 285-298.
(81) A.-E. Bennett, C.-M. Rienstra, M. Auger, K. Lakshmi, and R.-G. Griffin, Heteronuclear decoupling in rotating solids, J. Phys. Chem., 1995, 103, 6951-6958.
(82)http://www.aandb.com.tw/paage0004/uv_cis_nir_04_lambda_750.html.
(83) C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S.T. Chiang, G. T. K. Fey and H.-M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chem. Commun., 2009, 5018-5020.
(84) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. Deka, S.-H. Liao, and
C.-W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chem. Eur. J., 2013, 19 , 6358–6367.
(85) N. Liu, R.- A. Assink and C.-J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces, Chem. Commun., 2003, 370-371.
(86) C.-S. Chen, C.-C. Chen, C.-T. Chen, and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011,47, 2288-2290.
(87) A. Espíndola-Gonzalez, A. Martínez-Hernández, C. Angeles-Chávez, V. Castaño, C. Velasco-Santos, Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes, Nanoscale Res Lett, 2010, 5, 1408-1417.
(88) T. P. B. Nguyen, J.-W. Lee, W. G. Shim, H. Moon, Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA, Microporous Mesoporous Mater., 2008, 110, 560–569.
(89) H. Taher, S. Al-Zuhair , A.- H. Al-Marzouqi, Y. Haikb, M. Farid, Effective extraction of microalgae lipids from wet biomass for biodiesel production, Biomass Bioenergy, 2014, 66, 159-167.
(90) M. A. Shenashen, S.-A. El-Safty , M. Khairy, Trapping of biological macromolecules in the three-dimensional mesocage pore cavities of monolith adsorbents, J. Porous Mater., 2013, 20, 679-692.
(91) A. Vinu, N. Gokulakrishnan, V.- V. Balasubramanian, S. Alam, M.- P. Kapoor, K. Ariga, and T. Mori, Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization, Chem. Eur. J., 2008, 14, 11529–11538.
(92) K.Y. Foo, and B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 2010, 156, 2–10.
(93) D.- J. O′Shannessy, and D.- J. Winzor, Interpretation of Deviations from Pseudo-First-Order Kinetic Behavior in the Characterization of Ligand Binding by Biosensor Technology, Anal. Biochem., 1996, 236, 275-283.
(94) Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 2006, 136, 681–689.
(95) M. N. Sarvia, T. B. Bee, C. K. Gooi, B.- W. Woonton , M.- L. Gee, and A.-J. O’Connor, Development of functionalized mesoporous silica for adsorption and separation of dairy proteins, Chem. Eng. J., 2014, 235, 244–251.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2016-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明