博碩士論文 103223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.175.191.168
姓名 張佑如(Yu-Ju Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分為兩部分,第一部分為利用兩種不同特性之高分子材料 (M-2070及ED2003) 分別與具環氧基團之材料聚合,依據不同重量比混摻,並改變其氧鋰比,合成出混摻型有機無機固態高分子電解質。接著探討鋰鹽濃度對於高分子電解質的性質影響及鋰離子與高分子鏈段的作用情形:利用熱重分析儀 (TGA) 觀察其熱穩定性;以X-ray粉末繞射儀 (Powder X-Ray Diffractometer) 與微差掃描熱卡計 (DSC) 研究高分子鏈段結晶情形;以掃描式電子顯微鏡 (SEM) 分析其表面形態;以傅立葉紅外線吸收光譜儀 (FTIR) 對其結構作鑑定並分析鋰鹽解離程度;以交流阻抗分析儀 (AC Impedance) 測量離子導電度與電化學穩定性;以固態核磁共振光譜儀 (SSNMR) 之13C CP MAS及29Si CP MAS進行結構鑑定,並利用1H-13C 2D WISE與7Li NMR譜寬量測了解鋰離子與高分子鏈段運動性之間的動力學分析研究。比較FTIR、DSC與核磁共振方法其量測結果與離子導電度之趨勢相符,當鋰鹽濃度於此固態電解質達一定程度時,可得到一最佳鋰離子傳遞速率,具有較佳導電度,此固態高分子電解質於30 C下量測其離子導電度可達1.01 × 10-4 S cm-1。
第二部分為將第一部分所合成固態電解質吸附不同種類之液態電解液形成膠態電解質,期望藉由有機溶劑使鋰離子有較佳的傳導效果,以提升離子導電度。接著以澎潤比測試探討膠態電解質吸附各類電解液之吸附情形;以交流阻抗分析儀 (AC Impedance) 測量離子導電度與電化學穩定性,得知此膠態高分子電解質吸附1M LiPF6 in EC/DEC (1:1, v/v) 於30 C下其離子導電度可達到2.04 × 10-2 S cm-1,並可承受約4.2 V之氧化分解電壓;最終將膠態電解質與市售之隔離膜同時吸附1M LiPF6 in EC/DEC (1:1, v/v) 分別組成硬幣型鋰離子電池,探討兩者之電性表現,結果顯示本實驗所合成之膠態電解質具有較佳的充放電循環壽命。
摘要(英) A new organic-inorganic hybrid electrolyte was synthesized by blending two organic-inorganic hybrid precursors. Two precursors based on reactions of (Ⅰ) triblock co-polymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2003) with poly(ethylene glycol) diglycidyl ether (PEGDGE) and followed by co-condensation with (3-Isocyanatopropyl)triethoxysilane (ICPTES), and (Ⅱ) oligo(oxyalkylene)-amines (M-2070) with poly(ethylene glycol) diglycidyl ether (PEGDGE) via condensation. The hybrid electrolytes were obtained by varying the weight percentages of two precursors and LiClO4 salt.
The structure and electrochemical properties of the polymer electrolytes were characterized by different of techniques including thermogravi-metric analyzer (TGA), Powder X-Ray Diffractometer, differential scanning calorimetry (DSC), scanning electron spectroscopy (SEM), Fourier transform infrared spectroscopy (FTIR), 13C cross-polarization magic-angle spinning (CPMAS), AC impedance and charge–discharge measurement. The hybrid polymer electrolyte was measured the ionic conductivity value of 1.01 × 10−4 S cm−1 at 30 °C. Multinuclear NMR techniques were used to provide a microscopic view for the specific interaction between the polymer chains and Li+ cations. The results of 2D 1H-13C wide-line separation (WISE) and 7Li static line NMR width measurements found that the mobility of the 7Li cations are strongly related to a dynamic environment created by the polymer chains motion in the amorphous phase.
After swelling in different liquid electrolyte solvents, the gel polymer electrolytes were prepared. The swelling ratio and the ionic conductivity of the gel electrolytes were measured with liquid electrolyte solutions, the gel polymer electrolytes immersed in 1M LiPF6 in EC/DEC (1:1, v/v) represents the highest ionic conductivity as 2.04 × 10-2 S cm-1 at 30 °C. This gel electroltyte also had good electrochemical stability up to 4.2 V. Finally, the gel electrolyte compared with commercial separator PP membrane immersed in 1M LiPF6 in EC/DEC (1:1, v/v) applied for charge–discharge measurement of lithium ion batteries. Hence, it can be concluded that this new hybrid polymer system is suitable for use as a gel polymer electrolyte in rechargeable lithium batteries.
關鍵字(中) ★ 固態電解質
★ 鋰電池
關鍵字(英) ★ solid polymer electrolyte
★ lithium ion battery
論文目次 第一章 前言 1
1-1. 鋰二次電池簡介 1
1-2. 文獻回顧 4
1-2-1. 鋰離子電池 4
1-2-2. 高分子電解質 6
1-2-3. 固態高分子電解質 9
1-2-4. 膠態高分子電解質 15
1-3. 鋰離子鹽類 21
第二章 研究規劃 26
2-1. 研究動機 26
2-1-1. 具環氧樹脂之高分子 26
2-1-2. 有機矽高分子 29
2-2. 研究方向 30
2-3. 研究架構 31
第三章 實驗部分與原理 32
3-1. 實驗藥品 32
3-2. 儀器設備 34
3-3. 高分子電解質膜製備 35
3-3-1. 固態高分子電解質製備 35
3-3-2. 膠態高分子電解質製備 38
3-3-3. 硬幣型 2032 型電池組裝 39
3-4. 儀器分析原理 40
3-4-1. 熱重量分析儀 (Thermo Gravimetric Analyzer, TGA) 40
3-4-2. X-射線粉末繞射 (Powder X-Ray Diffractometer, XRD) 40
3-4-3. 微差掃描熱卡計 (Differential Scanning Calorimeter, DSC) 41
3-4-4. 傅立葉紅外線吸收光譜儀 (FTIR) 42
3-4-5. 交流阻抗分析儀 (AC-impedance) 42
3-4-6. 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 43
3-4-7. 固態核磁共振 (Solid State NMR) 43
3-4-8. 線性掃描電位測試 48
3-4-9. 電池性能測試 49
第四章 結果與討論 50
4-1. 固態高分子電解質 MP-EDPI-X-Y 50
4-1-1. 混摻型高分子主體之離子導電度 51
4-1-2. 熱重量分析 54
4-1-3. X-ray粉末繞射圖譜分析 56
4-1-4. 微差式掃描熱卡計分析 58
4-1-5. 紅外線吸收光譜之鑑定分析 61
4-1-6. 掃描式電子顯微鏡之表面分析 66
4-1-7. 交流阻抗儀之離子導電度測試 69
4-1-8. 固態核磁共振光譜儀分析 74
4-1-9. 線性掃描伏安法 92
4-2. 膠態高分子電解質 MP-EDPI-60- 94
4-2-1. 電解質吸附之澎潤比測試 95
4-2-2. 交流阻抗儀之離子導電度測試 98
4-2-3. 線性掃描伏安法 101
4-2-4. 電池性能測試 102
第五章 結論 108
參考文獻 110
附錄 - 以規則有序中孔洞碳材改質金屬氧化物之鋰電池陽極材料 121
第六章 前言 121
第七章 文獻回顧 122
7-1. 中孔洞碳材 (Mesoporous carbon materials) 122
7-1-1. 奈米模鑄法 (Nanocasting) 124
7-1-2. 以奈米模鑄法合成規則有序之中孔洞碳材文獻回顧 126
7-2. 陽極材料 132
7-2-1. Fe3O4陽極之文獻回顧 132
7-2-2. Co3O4陽極之文獻回顧 133
第八章 實驗方法 135
8-1. 藥品 135
8-2. 奈米模鑄法合成三維孔道結構 (Ia3 ̅d) 中孔洞碳材 136
8-2-1. 三維立方體Ia3 ̅d中孔洞矽材模板KIT-6合成 136
8-2-2. 三維立方體 Ia3 ̅d 中孔洞碳材 CMK-8合成 137
8-3. 含浸法合成Fe3O4@CMK8陽極複合物 137
8-4. 含浸法合成Co3O4@CMK8陽極複合物 137
8-5. 材料電化學性能測試 138
8-5-1. 陽極極片製作(Co3O4@CMK8及Fe3O4@CMK8) 138
8-5-2. 硬幣型電池組裝 138
8-5-3. 電池性能測試之變電流充放電循環測試 138
8-6. 實驗鑑定儀器 139
8-7. 鑑定儀器之原理 139
8-7-1. 同步輻射光束線 139
8-7-2. 氮氣等溫吸脫附曲線、表面積與孔洞特性鑑定 140
第九章 結果與討論 143
9-1. 低角度XRD結果分析 143
9-2. 氮氣等溫吸附/脫附結果分析 144
9-3. 不同電流密度充放電測試 146
參考文獻 148
參考文獻 (1) 陳玉惠; 陳奕廷, Chemistry, 2004, 62, 445.
(2) J. M. Tarascon; M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 2001, 414, 359-367.
(3) J. Hajek, French Patent, 1949, 8, 10.
(4) T. Nagaura, K. Tozawa, “Lithium ion rechargeable battery”, Prog. Batteries Solar Cells, 1990, 9, 209.
(5) M. S. Islam, C. A. J. Fisher, “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties”, Chem. Soc. Rev., 2014, 43, 185-204.
(6) E. Peled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Mode”, J. Electrochem. Soc. Rev., 1979, 126, 2047-2051.
(7) E. Peled, D. Golodnitsky, G. Ardel, V. Eshkenazy, “The sei model—application to lithium-polymer electrolyte batteries”, Electrochim. Acta, 1995, 40, 2197-2204.
(8) J. I. Yamaki, S. I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte”, J. Power Sources, 1998, 74, 219–227.
(9) K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries”, Chem. Rev., 2004, 104, 4303−4417.
(10) Y. Matsuoa, K. Fumita, T. Fukutsuka, Y. Sugie, H. Koyama, K. Inoue, “Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes”, J. Power Sources, 2003, 119-121, 373–377.
(11) G. E. Blomgren, “Liquid electrolytes for lithium and lithium-ion batteries”, J. Power Sources, 2003, 119–121, 326–329.
(12) J. K. Stark, Y. Ding, P. A. Kohl, “Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery”, J. Electrochem. Soc., 2011, 158, 1100-1105.
(13) Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, F. Ding, A. V. Cresce, K. Xu, J. G. Zhang, “Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure”, Nano Lett., 2014, 14, 6889−6896.
(14) R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, “Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries”, J. Am. Chem. Soc., 2014, 136, 7395−7402.
(15) C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, “In Situ Concentration Cartography in the Neighborhood of Dendrites Growing in Lithium/Polymer-Electrolyte/Lithium Cells”, J. Electrochem. Soc., 1999, 146, 4393-4400.
(16) P. V. Wright, D. E. Fenton, J. M. Parker, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 1973, 14, 589.
(17) M. B. Armand and J. M. Chabagno, Second International Meeting on Solid Electrolytes, 1978, 20.
(18) C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, “Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-poly(ethylene oxide) Adducls”, Solid State Ionics, 1983, 11, 91-95.
(19) W. H. Meyer, “Polymer Electrolytes for Lithium-Ion Batteries”, Adv. Mater., 1998, 10, 439-448.
(20) D. Fauteux, A. Massuccom, M. Mclin, M. V. Buren, J. Shi, “Lithium Polymer Electrolyte Rechargeable Battery”, Electrochim. Acta, 1995, 40, 2185-2190.
(21) R. C. Agrawal1, G. P. Pandey, “Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview”, J. Phys. D: Appl. Phys., 2008, 41.
(22) E. Quartarone, P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives”, Chem. Soc. Rev., 2011, 40, 2525–2540.
(23) K. Murata, S. Izuchi, Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 2000, 45, 1501–1508.
(24) C. W. Walker, Mark Salomon, “Improvement of Ionic Conductivity in Plasticized PEO-Based Solid Polymer Electrolytes”, J. Electrochem. Soc., 1993, 140, 3409-3412.
(25) X. Andrieu, J. F. Fauvarque, A. Goux, T. Hamaide, R. M’Hamdi, T. Vicedo, “Solid Polymer Electrolytes Based on Statistical Poly (Ethylene Oxide-Propylene Oxide) Copolymers”, Electrochim. Acta, 1995, 40, 2295-2299.
(26) N. P. Young, D. Devaux, R. Khurana, G. W. Coates, N. P. Balsara, “Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries”, Solid State Ionics, 2014, 263, 87–94.
(27) G. Liu, C. L. Reeder, X. Sun, J. B. Kerr, “Diffusion coefficients in trimethyleneoxide containing comb branch polymer electrolytes”, Solid State Ionics, 2004, 175, 781–783.
(28) S. Ü. Çelik, A. Bozkurt, “Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries”, Solid State Ionics, 2010, 181, 987–993.
(29) Z. Zhang, D. Sherlock, R. West, R. West, “Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone with Oligo(oxyethylene) Side Chains: Synthesis and Conductivity”, Macromolecules, 2003, 36, 9176-9180.
(30) P. Han, Y. Zhu, J. Liu, “An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method”, J. Power Sources, 2015, 284, 459-465.
(31) J. E. Weston, B. C. H. Steele, “Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polyme electrolytes”, Solid State lonics, 1982, 7, 75-79.
(32) S. Liu, H. Wang, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Yang, “Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li”, J. Power Sources, 2011, 196, 7681– 7686.
(33) M. Marcinek, A. Bac, P. Lipka, A. Zalewska, G. Zukowska, R. Borkowska, W. Wieczorek, “Effect of Filler Surface Group on Ionic Interactions in PEG-LiClO4-Al2O3 Composite Polyether Electrolytes”, J. Phys. Chem. B, 2000, 104, 11088-11093.
(34) K. Vignarooban, M.A.K.L. Dissanayake, I. Albinsson, B. E. Mellander, “Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes”, Solid State Ionics, 2014, 266, 25–28.
(35) N. S. T. Do, D. M. Schaetzl, B. Dey, A. C. Seabaugh, S. K. Fullerton-Shirey, “ Influence of Fe2O3 Nanofiller Shape on the Conductivity and Thermal Properties of Solid Polymer Electrolytes: Nanorods versus Nanospheres”, J. Phys. Chem. C, 2012, 116, 21216−21223.
(36) J. Xi, S. Miao, X. Tang, “Selective Transporting of Lithium Ion by Shape Selective Molecular Sieves ZSM-5 in PEO-Based Composite Polymer Electrolyte”, Macromolecules, 2004, 37, 8592-8598.
(37) J. Xi, X. Qiu, X. Ma, M. Cui, J. Yang, X. Tang, W. Zhu, L. Chen, “Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery”, Solid State Ionics, 2005, 176, 1249–1260.
(38) F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, “Nanocomposite polymer electrolytes for lithium batteries”, Nature, 1998, 394, 456-458.
(39) D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu, Y. Cui, “High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)”, Nano Lett., 2016, 16, 459−465.
(40) G. M. Wu, S. J. Lin, C. C. Yang, “Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes”, J. Membrane Sci., 2006, 275, 127-133.
(41) F. B. Dias, L. Plomp, J. B. J. Veldhuis, “Trends in polymer electrolytes for secondary lithium batteries”, J. Power Sources, 2000, 88, 169–191.
(42) G. Feuillade, P. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, J. Appl. Electrochem., 1975, 5, 63-69.
(43) K. M. Abraham, M. Alamgir, “Room temperature polymer electrolytes and batteries based on them”, Solid State lonics, 1994, 70/71, 20-26.
(44) M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P.Łężak, Z. Zukowska, A. Zalewska, W. Wieczorek, “Electrolytes for Li-ion transport – Review”, Solid State Ionics, 2015, 276, 107–126.
(45) J. Y. Song, Y. Y. Wang, C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 1999, 77, 183–197.
(46) S. Chintapalli, R. Frech, “Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes”, Solid State Ionics, 1996, 86-88, 341-346.
(47) M. C. Borghini, M. Mastragostino, A. Zanelli, “Reliability of lithium batteries with crosslinked polymer electrolytes”, Electrochim. Acta, 1996, 41, 2369-2373.
(48) E. H. Cha, D. R. Macfarlane, M. Forsyth, C. W. Lee, “Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer”, Electrochim. Acta, 2004, 50, 335–338.
(49) M. Watanabe, M. Kanba, K. Nagaoka, I. Shinohara, “Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application”, J. Appl. Polym. Sci., 1982, 27, 4191–4198.
(50) K. M. Abraham, M. Alamgir, “Li+-Conductive Solid Polymer Electrolytes with Liquid-Like Conductivity”, J. Electrochem. Soc., 1990, 137, 1657-1658.
(51) P. L. Kuo, C. A. Wu, C. Y. Lu, C. H. Tsao, C. H. Hsu, S. S. Hou, “High Performance of Transferring Lithium Ion for Polyacrylonitrile- Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte”, Appl. Mater. Interfaces, 2014, 6, 3156−3162.
(52) T. Iijima, Y. Toyoguchi, N. Eda, “Quasi-solid organic electrolytes gelatinized with polymethylmethacrylate and their applications for lithium batteries”, Denki Kagaku, 1985, 53, 619-621.
(53) G. B. Appetecchi, F. Croce, B. Scrosati, “Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes”, Electrochim. Acta, 1995, 40, 591-997.
(54) E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, F. Croce, “Long-term structural stability of PMMA-based gel polymer electrolytes”, Electrochim. Acta, 1998, 43, 1435-1439.
(55) Y. Liu, J. Y. Lee, L. Hong, “Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene) gel electrolytes”, Solid State Ionics, 2002, 150, 317– 326.
(56) M. Alamgir, K. M. Abraham, “Li Ion Conductive Electrolytes Based on Poly(vinyl chloride)”, J. Electrochem. Soc., 1993, 140, L96-L97.
(57) S. Ramesh, A. K. Arof, “Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes”, Mater. Sci. and Eng. B, 2001, 85, 11–15.
(58) N. S. Choi, J. K. Park, “New polymer electrolytes based on PVC:PMMA blend for plastic lithium-ion batteries”, Electrochim. Acta, 2001, 46, 1453–1459.
(59) E. Tsuchida, H. Ohno, K. Tsunemi, “Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I”, Electrochim. Acta, 1984, 28, 591-595.
(60) G. Kang, Y. Cao, “Application andmodification ofpoly(vinylidene fluoride) (PVDF) membranes – A review”, J. Membrane Sci., 2014, 463, 145–165.
(61) Z. Jiang, B. Carroll, K. M. Abraham, “Studies of some poly(vinylidene fluoride) electrolytes”, Elecrrochim. Acta, 1997, 42, 2667-2677.
(62) C. Yang, Z. Jia, Z. Guan, L. Wang, “Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries”, J. Power Sources, 2009, 189, 716–720.
(63) J. T. Dudley, D. P. Wilkinson, G. Thomas, R. LeVae, S. Woo, H. Blom, C. Horvath, M. W. Juzkow, B. Denis, P. Juric, P. Aghakian, J. R. Dahn, “Conductivity of electrolytes for rechargeable lithium batteries”, J. Power Sources, 1991, 35, 59-82.
(64) J. M. Tarascon, D. Guyomard, “New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Lil +xMn2O4/carbon Li-ion cells”, Solid State Ionies, 1994, 69, 293-305.
(65) D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Zinigrad, B. Markovsky, “The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries”, J. Electrochem. Soc., 1995, 142, 2873-2882.
(66) G. H. Newman, R. W. Francis, L. H. Gaines, B. M. L. Rao, “Hazard Investigations of LiClO4 / Dioxolane Electrolyte”, J. Electrochem. Soc., 1980, 127, 2025-2027.
(67) I. Yoshimatsu, T. Hirai, J. Yamaki, “Lithium Electrode Morphology during Cycling in Lithium Cells”, J. Electrochem. Soc., 1988, 135, 2422-2427.
(68) K. Takata, M. Morita, Y. Matsuda, “Cycling Characteristics of Secondary Li Electrode in LiBF4/Mixed Ether Electrolytes”, J. Electrochem. Soc., 1985, 132, 126-128.
(69) M. Ue, S. Mori, “Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent”, J. Electrochem. Soc., 1995, 142, 2577-2581.
(70) G. Lu, N. Miura, N. Yarnazoe, “Mixed Potential Hydrogen Sensor Combining Oxide Ion Conductor with Oxide Electrode”, J. Electrochem. Soc., 1996, 143, L154-L155.
(71) K. Naoi, M. Mori, Y. Naruoka, W. M. Lamanna, R. Atanasoski, “The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]”, J. Electrochem. Soc., 1999, 146, 462-469.
(72) A. Webber, “Conductivity and Viscosity of Solutions of LiCF3SO3, Li(CF3SO2)2N, and Their Mixtures”, J. Electrochem. Soc., 1991, 138, 2586-2590.
(73) H. Yang, K. Kwon, T. M. Devine, J. W. Evans, “Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance”, J. Electrochem. Soc., 2000, 147, 4399-4407.
(74) A. A. Smagin, V. A. Matyukha, V. P. Korobtsev, “Application of thermogravimetric studies for optimization of lithium hexafluorophosphate production”, J. Power Sources, 1997, 68, 326-327.
(75) T. Kawamura, A. Kimura, M. Egashira, S. Okada, J. Yamaki, “Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells”, J. Power Sources, 2002, 104, 260-264.
(76) S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, K. Kinoshita, “Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions”, Electrochem. Solid-State Lett., 2001, 4, A42-A44.
(77) L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, “Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells”, J. Power Sources, 1997, 68, 320-325.
(78) P. M. Blonsky, D. F. Shriver, “Polyphosphazene Solid Electrolytes”, J . Am. Chem. Soc., 1984, 106, 6854-6855.
(79) F. Groce, F. Gerace, G. Dautzemberg, S. Passerini, G.B. Appetecchi, B. Scrosati, “Synthesis and characterization of highly conducting gel electrolytes”, Electrochim. Acta, 1994, 39, 2187-2194.
(80) A. Vallée, S. Besner, J. Prud′Homme, “Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behavior”, Electrochim. Acta, 1992, 37, 1579-1583.
(81) S. V. Levchik, E. D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature”, Polymer International, 2004, 53, 1901–1929.
(82) L. Shechter, J. Wynstra, “Glycidyl Ether Reactions with Alcohols, Phenols, Carboxylic Acids, Acid Anhydrides”, Ind. Eng. Chem., 1956, 48, 86-93.
(83) V. Trappe, W. Burchard, “Anhydride-Cured Epoxies via Chain Reaction. 1. The Phenyl Glycidyl Ether/Phthalic Acid Anhydride System”, Macromolecules, 1991, 24, 4138-4744.
(84) M. S. Wang, T. J. Pinnavaia, “Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin”, Chem. Mater., 1994, 6, 468-474.
(85) X. Peng, H. Ba, D. Chen, F. Wang, “Two-Component Epoxy Network-LiClO4 Polymer Electrolyte”, Ehrrochim. Acta, 1992, 37, 1569-1572.
(86) S. Guhathakurta, K. Min, “Lithium sulfonate promoted compatibilization in single ion conducting solid polymer electrolytes based on lithium salt of sulfonated polysulfone and polyether epoxy”, Polymer, 2010, 51, 211–221.
(87) 林麗娟, X光繞射原理及其應用, X光材料分析技術與應用專題, 工業材料, 1994, 86, 100-109.
(88) H. F. Mark, “Experimental methods in polymer chemistry”, J. Polym. Sci.: Polym. Lett. Ed., 1981, 19, 34-35.
(89) K. Pinkwart, J. Tübke, in Handbook of Battery Materials, Wiley-VCH Verlag GmbH & Co. KGaA2011, pp. 1-26.
(90) E. R. Andrew, A. Bradbury, R. G. Eades, “Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed”, Nature, 1958, 182, 1659-1659.
(91) I. J. Lowe, “Free Induction Decays Of Rotating Solids”, Phys. Rev. Lett., 1959, 2, 285-287.
(92) K. Schmidt-Rohr, J. Clauss, H. W. Spiess, “Correlation of Structure, Mobility, and Morphological Information in Heterogeneous Polymer Materials by Two-Dimensional Wideline-Separation NMR Spectroscopy”, Macromolecules, 1992, 25, 3273-3277.
(93) 高憲明, NMR化工技術, 固態核磁共振技術於材料化學之應用與研究, 166-188.
(94) S. H. Chung, K. R. Jeffrey, J. R. Stevens, “A 7Li nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene‐glycol)”, J. Chem. Phys., 1991, 94, 1803-1811.
(95) A. Abragam, The Principles of Nuclear Magnetism, 1961
(96) P. Jannasch, “Phase behavior and ion conductivity of electrolytes based on aggregating combshaped polyethers”, Electrochimica Acta, 2001, 46, 1641-1649.
(97) J. R. MacCallum; and C. A. Vincent, Polymer Electrolyte Reviews 1 and 2, Elsevier, London, 1987; 1989.
(98) S. Hu, S. Fang, “Solid electrolyte based on an inorganic salt-organic salt hybrid system”, Electrochim. Acta, 1999, 44, 2721-2726.
(99) P. P. Chu, H. P. Jen, F. R. Lo, C. L. Lang, “Exceedingly High Lithium Conductivity in Novolac Type Phenolic Resin/PEO Blends”, Macromolecules, 1999, 32, 4738-4740.
(100) A. C. Bloise, C. C. Tambelli, R. W. A. Franco, J. P. Donoso, C. J. Magon, M.F. Souza, A.V. Rosario, E.C. Pereira, “Nuclear magnetic resonance study of PEO-based composite polymer electrolytes”, Electrochim. Acta, 2001, 46, 1571-1579.
(101) J. P. Donoso, T. J. Bonagamba, H. C. Panepucci, L. N. Oliveira, W. Gorecki, C. Berthier, M. Armand, “Nuclear magnetic relaxation study of poly(ethylene oxide)–lithium salt based electrolytes”, J. Chem. Phys., 1993, 98, 10026-10036.
(102) P. Mustarelli, C. Capiglia, E. Quartarone, C. Tomasi, P. Ferloni, “Cation dynamics and relaxation in nanoscale polymer electrolytes: A 7Li NMR study”, Phys. Rev. B, 1999, 60, 7228-7233.
(103) S. D. Brown, S. G. Greenbaum, M. G. McLin, M.C. Wintersgill, J.J. Fontanella, “Complex impedance, DSC and lithium-7 NMR studies of poly (propylene oxide ) complexed with LiN (SO2CF3) 2 and with LiAsF6”, Solid State Ionics, 1994, 67, 257-262.
(104) A. Subramania, N. T. K. Sundaram, A. R. Priya, R. Gangadharan, T. Vasudevan, “Preparation of a Microporous Gel Polymer Electrolyte with a Novel Preferential Polymer Dissolution Process for Li-Ion Batteries”, J. Appl. Polym. Sci., 2005, 98, 1891-1896.
(105) W. Li, M. Yang, M. Yuan, Z. Tang, J. Q. Zhang, “Dual-Phase Polymer Electrolytes Based on Blending Poly(MMA-g-NBR) and PMMA”, J. Appl. Polym. Sci., 2007, 106, 3084-3090.
(106) T. G. Lamond, H. Marsh, “The surface properties of carbon—III the process of activation of carbons”, Carbon, 1964, 1, 293-302.
(107) Z. H. Hu, M. P. Srinivasan, Y. M. Ni, “Preparation of mesoporous high-surface-area activated carbon”, Adv. Mater., 2000, 12, 62-65.
(108) H. Marsh, B. Rand, “The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities”, Carbon, 1971, 9, 63-72 .
(109) H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules”, Chem. Mater., 1996, 8, 454-462.
(110) A. Oya, S. Yoshida, J. Alcanizmonge, A. Linaressolano, “Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt”, Carbon, 1995, 33, 1085-1090.
(111) J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida, T. Iizuka, “Novel preparation method for the production of mesoporous carbon fiber from a polymer blend”, Carbon, 1997, 35, 1031-1033.
(112) H. Tamon, H. Ishuzada, T. Yamamoto, T. Suzuki, “Preparation of mesoporous carbon by freeze drying”, Carbon, 1999, 37, 2049-2055.
(113) R. W. Pekala, “Organic aerogels from the polycondensation of resorcinol with formaldehyde”, J. Mater. Sci., 1989, 24, 3221-3227.
(114) J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of porous graphitic carbon in liquid chromatography”, J. Chromatogr., 1986, 352, 3-25.
(115) J. H. Knox, K. K. Unger, H. Mueller, “Prospects for carbon as packing material in high-performance liquid chromatography”, J. Liq. Chromatogr., 1983, 6, 1-36.
(116) W. Guo, F. Su, X. S. Zhao, “Ordered mesostructured carbon templated by SBA-16 silica”, Carbon, 2005, 43, 2423-2426.
(117) C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, “Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers”, Angew. Chem. Int. Ed., 2004, 43, 5785-5789.
(118) C. D. Liang, S. Dai, “Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction”, J. Am. Chem. Soc., 2006, 128, 5316-5317.
(119) Y. Shi, Y. Wan, D. Zhao, “Ordered mesoporous non-oxide materials”, Chem. Soc. Rev., 2011, 40, 3854–3878.
(120) C. G. Goltner, M. C. Weienberger, “Mesoporous organic polymers obtained by two-step nanocasting”, Acta Polymer, 1998, 49, 704-709.
(121) T. Kyotani, “Control of pore structure in carbon”, Carbon, 2000, 38, 269-286.
(122) A. Lu, F. Schüth, “Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials”, Adv. Mater., 2006, 18, 1793–1805.
(123) M. Tiemann, “Repeated Templating”, Chem. Mater., 2008, 20, 961–971.
(124) J. H. Knox, B. Kaur, G. R. Millward, “Structure And Performance of Porous Graphitic Carbon in Liquid Chromatography”, J. Chromatography, 1986, 352, 3-25.
(125) R. Ryoo, S. H. Joo, S. Jun, “Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation”, J. Phys. Chem. B, 1999, 103, 7743–7746.
(126) L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O. V. Belousov, R. Ryoo, “Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy”, J. Phys. Chem. B, 2002, 106, 12198-12202.
(127) S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, “Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure”, J. Am. Chem. Soc., 2000, 122, 10712-10713.
(128) F. Kleitz, S. H. Choi, R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinumnanowires, carbon nanorods and carbon nanotubes”, Chem. Commun., 2003, 17, 2136-2137.
(129) S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, “Correction: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles”, Nature, 2001, 414, 470-470.
(130) T. W. Kim, I. S. Park; R. Ryoo, “A synthetic route to ordered mesoporous carbon materials with graphitic pore walls”, Angew. Chemie., 2003, 115, 4511-4515.
(131) C. H. Kim; D. K. Lee,T. J. Pinnavaia, “Graphitic mesostructured carbon prepared from aromatic precursors”, Langmuir, 2004, 20, 5157-5159.
(132) A. B. Fuertes, S. Alvarez, “Graphitic mesoporous carbons synthesised through mesostructured silica templates”, Carbon, 2004, 42, 3049-3055.
(133) P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 2000, 407, 496–499.
(134) J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, “Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions”, Adv. Mater., 2010, 22, E170–E192.
(135) Q. Zhang, Z. Shi, Y. Deng, J. Zheng, G. Liu, G. Chen, “Hollow Fe3O4/C spheres as superior lithium storage materials”, J. Power Sources, 2012, 197, 305–309.
(136) T. Muraliganth, A.V. Murugan, A. Manthiram, “Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries”, Chem. Commun., 2009, 7360–7362.
(137) T. Zhu, J.S. Chen, X.W. Lou, “Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries”, J. Phys. Chem. C, 2011, 115, 9814–9820.
(138) W. Zhang, X. Wu, J. Hu, Y. Guo, L. Wan, “Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries”, J. Adv. Funct. Mater., 2008, 18, 3941–3946.
(139) T. Yoon, C. Chae, Y. K. Sun, X. Zhao, H. H. Kung, J. K. Lee, “Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes”, J. Mater. Chem., 2011, 21, 17325–17330.
(140) E. Kang, Y. S. Jung, A. S. Cavanagh, G. H. Kim, S. M. George, A. C. Dillon, J. K. Kim, J. Lee, “Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries”, Adv. Funct. Mater., 2011, 21, 2430–2438.
(141) F. Wu, R. Huang, D. Mu, X. Shen, B. Wu, “A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries”, J. Alloys Compd., 2014, 585, 783–789.
(142) Y. Liu, C. Mi, L. Su, X. Zhang, “Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries”, Electrochim Acta, 2008, 53, 2507–2513.
(143) G. Kim, I. Nam, N. D. Kim, J. Park, S. Park, J. Yi, “A synthesis of graphene/Co3O4 thin films for lithium ion battery anodes by coelectrodeposition”, Electrochem. Commun., 2012, 22, 93–96.
(144) J. Wang, C. Xue, Y. Lv, F. Zhang, B. Tu, D. Zhao, “Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance”, Carbon, 2011, 49, 4580–4588.
(145) H. Zhang, H. Tao, Y. Jiang, Z. Jiao, M. Wu, B. Zhao, “Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries”, J. Power Sources, 2010, 195, 2950–2955.
(146) G. Kwak, J. Hwang, J. Cheon, M. H. Woo, K. Jun, J. Lee, K. Ha, “Preparation Method of Co3O4 Nanoparticles Using Ordered Mesoporous Carbons as a Template and Their Application for Fischer−Tropsch Synthesis”, J. Phys. Chem. C, 2013, 117, 1773−1779.
(147) https://www.nsrrc.org.tw/
(148) K. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., 1986, 57, 603-619.
(149) S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 1940, 62, 1723-1732.
(150) G. Ertl; H. KnÖzinger; J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
(151) Y. Sakamoto, T. W. Kim, R. Ryoo, O. Terasaki, “Three-dimensional structure of large-pore mesoporous cubic Ia3 ̅d silica with complementary pores and its carbon replica by electron crystallography”, Angew. Chem. Int. Ed., 2004, 43, 5231-5234.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明