博碩士論文 103223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.128.199.162
姓名 方煜馨(Yu-Shin Fang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場誘導聚苯醚碸摻雜複合薄膜之研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 改善鋰離子電池電性之新穎電解液添加劑
★ 電場誘導高離子導向之混摻高分子固態電解質★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討
★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討★ 電致發光電池中電解質的結構與物性探討
★ 奈米二氧化鈦-固態複合高分子電解質★ 交聯型固態高分子電解質
★ 高分子固態電解質改進高分子發光二極體之光學特性研究★ 複合高分子電解質結構與電性之研究
★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性
★ 超分子發光二極體相容性、分子運動性與光性之研究★ 新穎質子交換膜
★ 原位聚合有機無機複合發光二極體 之分散性及光性研究★ 原位聚合固態電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 燃料電池質子交換膜仍有幾個缺點待改善,如(1)高溫失水,使質子導電度因缺乏傳遞介質而損失導電度、(2)燃料竄透,儘管有高的質子導電度也會因嚴重的燃料竄透而無法彰顯其效能、(3)耐久穩定性,薄膜須具有良好的機械與化學穩定性延長使用壽命。同時改進以上缺點是極大的挑戰,但目前仍無完整的方案。
本研究利用具有親水性質之PES添加至sPEEK高分子中,並於外加強電場下鑄造成質子交換膜。研究顯示,經由強電場誘導後sPEEK與PES高分子受到電場極化,薄膜中親水孔道在垂直於薄膜表面的方向形成具有方向性的優先取向結構,而此結構大幅的改善離子導電度。施加電場使更多的磺酸根基團顯露於親水域表面參與質子的運送,也使質子導電度大幅增加。此外,施用電場讓疏水區產生密緻化,降低了薄膜的膨潤率、燃料竄透性及提高其機械強度和化學穩定性。添加有機物PES至sPEEK中所製備的有機複合薄膜,在經電場誘導後,3PES/E之薄膜具有高達7.43×10-2 S/cm的質子導電度,在高溫低濕(80℃、20%RH)環境下仍可保持9.69x10-4 S/cm。製做成MEA之DMFC效能在80℃下可達到170 mW/cm2的輸出功率相較於市售薄膜N117的100 mW/cm2的效果更佳。
本研究指出磺酸化程度為基本條件,但提高質子導電度更有效的方法卻不是提高磺酸化程度,而是在膜材中構建具順向性排列的親水流通管道,更有效的利用磺酸根及便捷的傳輸路徑,如此可以使用較低的含水量以大幅提升質子傳導效率。此一新穎製備薄膜方法優化親水孔道的形貌紋理結構特徵,改善質子交換膜導電度,也同時改進了高溫失水、燃料竄透、耐久穩定性等多項物性,有效解決目前燃料電池膜材開發面臨的兩難窘況,該新穎膜材製備方法也能廣泛應用於各不同再生能源裝置所需膜材之開發。
摘要(英) There are few drawbacks in fuel cell proton exchange membranes that need implementation. They include: (1) dehydration of water at high-temperature leads to poor conductivity, (2) severe fuel permeability and cross-over suppresses power output; (3) weak membrane strength and insufficient chemical stability for long term operation. Improving upon all these deficiencies is a challenging task in fuel cell membrane development.
Proton exchange membrane bears hydrophilic channel saturated with ion conducting medium, water. Ion transport is therefore heavily contingent upon the microstructure of this morphological texture. However, relationships between these structural features with ion conductivity have rarely been discussed. Even fewer are the studies of improvement on ion conductivity by means of tailoring channel morphology.
Present research uses external electric field poling to create preferentially ordered channel morphology with high structural integral hydrophobic region in the membrane, has shown to effectively improved all prior-mentioned deficiencies. Validity of this approach is demonstrated in the miscible sPEEK/PES composite processed under electric field. The study has demonstrated that electric poling treatment created membrane bearing preferentially ordered hydrophilic channel morphology and densely packed hydrophobic region. Due to more densely packed amorphous hydrophobic domain, the membrane showed lower degree of swelling in water and methanol, and improved mechanical strength and chemical stability. The composite membrane of 3PES/E shows the proton conductivity up to 7.43x10-2 S/cm. Also at the high temperature and low humidity (80℃, 20%RH) environment can still maintain 9.69x10-4 S/cm. Nearly 60% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 170 mA/cm2 (80℃, 1M Methanol).
These results made it clear that although high degree of sulfonation is essential to ion conductivity, it is actually more efficient to elevate ion conductivity through architected hydrophilic channel morphology that makes full utilization of the sulfonate groups and established more direct ion transport path. This approach effectively propelled ion conduction using materials bearing lower degree of sulfonation and resolved the long standing dilemma of fuel cell membrane development. The technique is also beneficial to the development of next generation high performance membrane developments encounter in many renewable energy technologies.
關鍵字(中) ★ 聚二醚酮
★ 聚苯醚碸
★ 複合薄膜
★ 電場誘導
關鍵字(英)
論文目次 中文摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 x
表目錄 xiv
重要名詞縮寫對照表 xv
第一章 緒論 1
1-1 前言 1
1-2 燃料電池組成及原理 2
1-3 研究動機 6
第二章 基本原理與文獻回顧 8
2-1 燃料電池質子交換膜介紹 8
2-2 質子交換膜傳遞機制 10
2-3 微結構性質探討 12
2-3-1 Nafion 13
2-3-2 sPEEK 17
2-4 PFSA改良與探討 21
2-4-1 Nafion/小分子化合物複合薄膜 22
2-4-2 Nafion/無機複合薄膜 23
2-5 非PFSA系列 28
2-5-1 碳氫高分子薄膜 28
2-5-2 有機/無機複合高分子薄膜 31
2-5-3 大分子/小分子複合高分子薄膜 31
2-6 電場誘導性質探討 35
2-6-1 裝置設計及原理 35
2-6-2 外加電場於質子交換膜之應用 36
第三章 實驗方法與原理 40
3-1 實驗儀器及技術原理 40
3-1-1 場發射掃描式電子顯微鏡(FE-SEM) 40
3-1-2 示差掃描熱卡計(Differential Scanning Calorimeter, DSC) 41
3-1-3 熱重分析儀(Thermal Gravimetric Analysis, TGA) 41
3-1-4 小角度X光散射(Small angle X-ray scattering, SAXS) 42
3-1-5 薄膜吸水量(Water Uptake)及膨潤率(Swelling) 42
3-1-6 離子交換容量(Ion Exchange Capacity, IEC) 43
3-1-7 複合薄膜機械強度測試 44
3-1-8 化學穩定性測試(Fenton’s test) 45
3-1-9 甲醇竄透率 46
3-1-10 質子導電度測量 47
3-1-11 DMFC單電池效能測試 49
3-2 物質合成及薄膜製備 51
3-2-1 磺酸化聚二醚酮高分子 51
3-2-2 有機複合薄膜之製備 51
3-2-3 外加電場裝置設計 52
3-2-4 市售Nafion117前處理 52
3-3 實驗藥品 53
3-4 樣品命名規則 54
第四章 結果與討論 55
4-1 複合薄膜材料性質與效能分析 56
4-1-1 吸水性、膨潤率與質子導電度之比較 57
4-1-2 熱穩定性分析 59
4-1-3 複合薄膜機械效能測試 61
4-1-4 質子導電度與甲醇竄透比較 62
4-1-5 薄膜選擇性(Selectivity) 63
4-1-6 DMFC單電池測試 64
4-2 外加電場誘導高分子複合薄膜探討及性質分析 66
4-2-1 SEM薄膜微結構影像 66
4-2-2 DSC薄膜保水性質分析 68
4-2-3 SAXS小角度散射微結構 70
4-2-4 IEC離子交換容量 72
4-2-5 吸水性及膨潤率與質子導電度比較 73
4-2-6 複合薄膜機械效能測試 75
4-2-7 化學穩定性測試 76
4-2-8 變溫及變濕質子導電度測試 78
4-2-9 質子導電度與甲醇燃料竄透率比較 81
4-2-10 薄膜選擇性(Selectivity) 82
4-2-11 DMFC單電池效能測試 83
第五章 結論與未來展望 85
5-1 結論 85
5-2 未來展望與研究建議 87
參考文獻 89
參考文獻 [1] http://www.tfci.org.tw/台灣燃料電池資訊網
[2] http://www.pro.energy.dtu.dk/Research/Fuel-cells
[3] R. Devanathan, "Recent developments in proton exchange membranes for fuel cells," Energy & Environmental Science, vol. 1, pp. 101-119, 2008.
[4] V. Neburchilov, J. Martin, H. Wang, J. Zhang, "A review of polymer electrolyte membranes for direct methanol fuel cells," Journal of Power Sources, vol. 169, pp. 221-238, 2007.
[5] https://www.polymersolutions.com/ Polymer Solutions Incorporated.
[6] 吳千舜,「奈米複合離子交換膜的離子與分子多尺度的動態行為之研究」,國立中央大學,博士論文,民國99年。
[7] X. Duan and S. Scheiner, "Analytic functions fit to proton transfer potentials," Journal of Molecular Structure, vol. 270, pp. 173-185, 1992.
[8] N. Laurs and P. Bopp, "Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 97, pp. 982-995, 1993.
[9] 侯官廷,「磺酸化二氧化鈦奈米管Nafion複合質子交換膜及燃料電池應用」,國立中央大學,碩士論文,民國100年。
[10] P. Choi, Nikhil H. Jalani, and R. Datta, "Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity," Journal of The Electrochemical Society, vol. 152, pp. 123-130, 2005.
[11] 張中良、林月微和徐雅亭,「燃料電池」與「熱管理技術」,工業材料雜誌,259期,89-115頁,2008年7月。
[12] P.V. Komarova, I.N. Veselov, P.P. Chu, P.G. Khalatur, A.R. Khokhlov, "Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone)," Chemical Physics Letters, vol. 487, pp. 291-296, 2010.
[13] B. Smitha, S. Sridhar, A.A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Journal of Membrane Science, vol. 259, pp. 10-26, 2005.
[14] A. K. Sahu, S. Pitchumani, P. Sridhar and A. K. Shukla, "Nafion and modified-Nafion membranes for polymer electrolye fuel cell:An overview," Indian Academy of Science, vol. 32, pp. 285-294, 2009.
[15] H. L. Yeager, A. Steck, "Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure," Journal of The Electrochemical Society, vol.128, pp. 1880-1884, 1981.
[16] S. R. Klaus, and Q. Chen, "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes," Nature Materials, vol. 7, pp. 75-83, 2008.
[17] D. Rivin, C. E. Kendrick, P. W. Gibson, N. S. Schneider, "Solubility and transport behavior of water and alcohols in Nafion," Polymer, vol.42, pp. 623-635, 2001.
[18] C. H. Ma, T. Leon Yu, H. L. Lin, Y. T. Huang, Y. L. Chen, U-S. Jeng, Y. H. Lai, Y. S. Sun, "Morphology and properties of Nafion membranes prepared by solution casting," Polymer, vol. 50, pp. 1764-1777, 2009.
[19] H. L. Lin, T. Leon Yu, F. H. Han, "A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC," Journal of Polymer Research, vol.13, pp. 379-385, 2006.
[20] H. Ghassemia, J. E. McGrathb,"Synthesis and properties of new sulfonated poly( p-phenylene) derivatives for proton exchange membranes. I," Polymer, vol. 45, pp. 5847-5854, 2004.
[21] J. Pang, H. Zhang, X. Li, L. Wang, B. Liu, Z. Jiang, "Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes," Journal of Membrane Science, vol. 318, pp. 271-279, 2008.
[22] P. V. Komarov, I. N. Veselov, and P. G. Khalatura, "Mesoscopic simulation of an ionomeric membrane based onsulfonated aromatic poly(ether ether ketone)," Russian Chemical Bulletin, International Edition, vol. 58, No. 11, pp. 2203-2206, 2009.
[23] G. Gebel, "Structure of Membranes for Fuel Cells: SANS and SAXS Analyses of Sulfonated PEEK Membranes and Solutions," Macromolecules, vol. 46, pp. 6057-6066, 2013.
[24] D.W. Van Krevelen, "Properties of Polymers: Their Correlation with Chemical Structure;Their Numerical Estimation and Prediction from Additive Group Contribution," 3Eds; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, Chapter 7, pp 189-224, 1990.
[25] G. P. Robertson, S. D. Mikhailenko, K. Wang, P. Xing, M. D. Guiver, S. Kaliaguine, "Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication," Journal of Membrane Science,vol.219,pp. 113–121, 2003.
[26] M. S. Jun, Y. W. Choi, J. D. Kim, "Solvent casting effects of sulfonated poly(ether ether ketone) for Polymer electrolyte membrane fuel cell," Journal of Membrane Science,vol.396,pp. 32–37, 2012.
[27] D. X. Luu, E. B. Cho, O. H. Han, D. Kim, "SAXS and NMR Analysis for the Cast Solvent Effect on sPEEK Membrane Properties," Journal of Physical Chemistry B, vol.113, No. 30, pp.10072-10076, 2009.
[28] C. X. Zhao, D. He, W. J. Gan, J. Yue, "Effect of Casting Solvent on Mechanical Properties and Microstructure of SPEEK Membrane," Materials Review, vol. 27, No. 16, pp. 91-93, 2013.
[29] H. X. Qian, S. J. He, J. Lin, "Effect of film-forming temperature on the performance of Sulfonated poly (ether ether ketone) proton exchange membrane," China Science Paper, vol. 9, No. 3, 2014.
[30] R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, and C. Rogers, "A Polymer Electrolyte for Operation at Temperatures up to 200℃," Journal of The Electrochemical Society, vol. 141, pp. L46-L48, 1994.
[31] Y. Z. Fu and A. Manthiram, "Nafion--Imidazole—H3PO4 Composite Membranes for Proton Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, vol. 154, pp. B8-B12, 2007.
[32] C. Schmidt, T. Gluck, G. Schmidt-Naake, "Modification of Nafion Membranesby Impregnation with Ionic Liquids," Chemical Engineering Technology, vol. 31, No. 1, pp. 13-22, 2008.
[33] M. Doyle, S. K. Choi, and G. Proulx, "High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites," Journal of The Electrochemical Society, vol. 147, pp. 34-37, 2000.
[34] M. Watanabe, H. Uchida, M. Emori, "Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal Oxides:  Experimental Analysis of the Self-Humidification and Suppression of Gas Crossover in Fuel Cells," Journal of Physical Chemistry, vol.102, pp. 3129-3137, 1998.
[35] A. Sacc`a, A. Carbone, E. Passalacqua, A. D`Epifanio, S. Licoccia, E. Sale, F. Traini, R. Ornelas, "Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)," Journal of Power Sources, vol. 152, pp. 16-21, 2005.
[36] K. Li, G. Ye, J. J. Pan, H. Zhang, M. Pan, "Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes," Journal of Membrane Science, vol. 347, pp. 26-31, 2010.
[37] H. Tang, Z. Wan, M. Pan, S. P. Jiang, "Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells," Electrochemistry Communications, vol. 9, pp. 2003-2008, 2007.
[38] G. Alberti, L. Boccali, M. Casciola, L. Massinelli, E. Montoneri, "Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. III. Preparation and characterization of γ-zirconium sulfoaryl phosphonates," Solid State Ionics, vol. 84, pp. 97-104, 1996.
[39] C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, S. Xiao, "Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications," Journal of Power Sources, vol. 184, pp. 197-203, 2008.
[40] G. Gnana Kumar, A. R. Kim, K. S. Nahm, R. Elizabeth, "Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC," International Journal of Hydrogen Energy, vol. 34, pp. 9788-9794, 2009.
[41] H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. Yan, "Nafion-bifunctional silica composite proton conductive membrane," Journal of Materials Chemistry, vol. 12, pp. 834-837, 2002.
[42] Y. Jin, S. Qiao, L. Zhang, Z. P. Xu, S. Smart, J. C. Diniz da Costa, G. Q. Lu, "Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers," Journal of Power Sources, vol. 185, pp. 664-669, 2008.
[43] B. R. Matos, E. I. Santiago, J. F. Q. Rey, A. S. Ferlauto, E. Traversa, M. Linardi, F. C. Fonseca, "Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as fillers," Journal of Power Sources, vol. 196, pp. 1061-1068, 2011.
[44] S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications," Journal of Membrane Science, vol. 173, pp. 17-34, 2000.
[45] J. M. Amarilla, R. M. Rojas, J. M. Rojo, M. J. Cubillo, A. Linares, J. L. Acosta, "Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites," Solid State Ionics, vol. 127, pp. 133-139, 2000.
[46] K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells," Journal of Membrane Science, vol. 185, pp. 29-39, 2001.
[47] V. Neburchilov, J. Martin, H. Wang, J. J. Zhang, "A review of polymer electrolyte membranes for direct methanol fuel cells," Journal of Power Sources, vol. 169, pp. 221-238, 2007.
[48] T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene)," Solid State Ionics, vol. 106, pp. 219-225, 1998.
[49] M. Kawahara, M. Rikukawa, K. Sanui, "Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(benzimidazole)," Polymers for advanced technologies, vol. 11, pp. 544-547, 2000.
[50] B. Yang and A. Manthiram, "Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells," Journal of Power Sources, vol. 153, pp. 29-35, 2006.
[51] P. Staiti, "Proton Conductive Membranes Constituted of Silicotungstic Acid Anchored To Silica-Polybenzimidazole Matrices," Journal of New Materials for Materials for Electrochemical Systems, vol. 4, pp. 181-186, 2001.
[52] M. Yamada, I. Honma, "Heteropolyacid-Encapsulated Self-Assembled Materials for Anhydrous Proton-Conducting Electrolytes," Journal of Physical Chemistry B, vol. 110, No. 41, pp. 20486-20490, 2006.
[53] G. Avgouropoulos, J. Papavasiliou, M. K. Daletou, J. K. Kallitsis, T. Ioannides, S. Neophytides, "Reforming methanol to electricity in a high temperature PEM fuel cell," Applied Catalysis B: Environmental, vol. 90, pp. 628-632, 2009.
[54] J. T. Wang, J. S. Wainright, R. F. Savinell, M. Litt, "A direct methanol fuel cell using acid-doped poly- benzimidazole as polymer electrolyte," Journal of Applied Electrochemistry, vol. 26, pp. 751-756, 1996.
[55] L. Qingfeng, H. A. Hjuler, N. J. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications," Journal of Applied Electrochemistry, vol. 31, pp. 773-779, 2001.
[56] B. C. Lin, S. Cheng, L. H. Qiu, F. Yan, S. M. Shang, J. M. Lu, "Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application," Chemistry of Materials, vol. 22, No. 5, pp. 1807-1813, 2010.
[57] S. S. Sekhon, P. Krishnan, B. Singh, K. Yamada, C. S. Kim, "Proton conducting membrane containing room temperature ionic liquid," Electrochimica Acta, vol. 52, pp. 1639-1644, 2006.
[58] V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng, N. J, Bjerrum, "Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications," Macromolecules, vol. 33, pp. 7609-7617, 2000.
[59] H. Zhang, X. F. Li, C. J. Zhao, T. Z. Fu, Y. H. Shi, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance," Journal of Membrane Science, vol. 308, pp. 66-74, 2008.
[60] H. L. Wu, C. C. M. Ma, F. Y. Liu, C. Y. Chen, S. J. Lee, C. L. Chiang, "Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes," European Polymer Journal, vol. 42, pp. 1688-1695, 2006.
[61] Y. Li, Q. T. Nguyen, P. Schaetzel, C. L. Buquet, L. Colasse, V. Ratieuville, S. Mararis, "Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties," Electrochimica Acta, vol. 111, pp. 419-433, 2013.
[62] 張國龍,「認識LCD液晶顯示器」,台肥月刊,第六期,2003年六月
[63] W. Eerenstein, N. D. Mathur and J. F. Scott, "Multiferroic and magnetoelectric materials," Nature, vol. 442, pp. 759-765, 2006.
[64] Holly L. Ricks-Laskoski and Arthur W. Snow, "Synthesis and Electric Field Actuation of an Ionic Liquid Polymer," J. AM. CHEM. SOC, vol. 128, pp. 12402-12403, 2006.
[65] G. Chen, H. Wang, H. Zhang, W. Zhao, W. Zhang, "Preparation of polymer/ oriented graphite nanosheet composite by electric field-inducement," Composites Science and Technology, vol. 68, pp. 238-243, 2008.
[66] Y. Wang, S. Zhao, J. Ren, J. Zhang, "Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes," Journal of Membrane Science, vol. 437, pp. 65-71, 2013.
[67] 曾御程,「電場誘導一維奈米金屬氧化物複合薄膜之研究」,國立中央大學,碩士論文,民國103年。
[68] W. J. Lin, Q. J. Meng, Y. .S. Zheng, Z. C. Zhang, W. M. Xia, Z. Xu, "Electric energy storage properties of poly(vinylidene fluoride)," Applied Physics Letters, vol. 96, pp. 192905, 2010.
[69] D. Liu, M. Z. Yates, "Tailoring the structure of S-PEEK/PDMS proton conductive membranes through applied electric fields," Journal of Membrane Science, vol. 322, pp. 256-264, 2008.
[70] S. B. Boob, "Field-structured proton exchange membranes for fuel cells," University of Connecticut, 2007.
[71] 陳正平,「結構用鋼材基本特性介紹」,技師報,764期,100年7月。
[72] 李亮儀,「奈米管複合高分子中高溫質子交換膜」,國立中央大學,碩士論文,民國97年。
[73] P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, S. Kaliaguine, "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes," Journal of Membrane Science, vol. 229, pp. 95-106, 2004.
[74] N. Intaraprasit, P. Kongkachuichay, "Preparation and properties of sulfonated poly(ether ether ketone)/Analcime composite membrane for a proton exchange membrane fuel cell (PEMFC)," Journal of the Taiwan Institute of Chemical Engineers, vol. 42, pp. 190-195, 2011.
[75] Rebecca S. L. Yee, Kaisong Zhang and Bradley P. Ladewig, "The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties," Membranes, vol. 3, pp. 182-195, 2013.
[76] B. Lakshmanan, W. Huang, D. Olmeijer, and J. W. Weidnera, "Polyetheretherketone Membranes for Elevated Temperature PEMFCs," Electrochemical and Solid-State Letters, vol. 6, No. 5, pp. A282-A285, 2003.
[77] C. K. Shin, G. Maier, B. Andreaus, G. Scherer, "Block copolymer ionomers for ion conductive membranes," Journal of Membrane Science, vol. 245, pp. 147-161, 2004.
[78] H. Liao, G. Xiao and D. Yan, "High performance proton exchange membranes obtained by adjusting the distribution and content of sulfonic acid side groups," Chem. Commun., vol. 49, pp. 3979-3981, 2013.
指導教授 諸柏仁(Po-jen Chu) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明