博碩士論文 103223042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.144.7.118
姓名 李育修(Yu-Hsiu Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 金奈米粒子包覆於UiO-66之有機相與水相合成的探討及中-微孔孔洞分級材料的研究與應用
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文分成兩部分:
第一部分為合成金屬奈米粒子於高熱穩定性的金屬有機骨架材料UiO-66中,在有機相下找到金奈米粒子能夠不被溶化掉的條件也能夠被包覆於UiO-66當中,其中找到最佳的條件為在DMF中利用ZrOCl2做為鋯源去反應,但在此狀況合成下的產物並非單晶結構包覆金屬奈米粒子。隨後,為了使綠色化學實踐,以及在DMF下所無法解決的課題-控制MOF的晶體成長與金屬面向呈一規則排序,同樣選擇金奈米粒子,並嘗試在水相下也做Metal@MOF,經過一系列實驗後,發現利用CTAB以及CTAC狀態下的金屬奈米粒子易被包覆,雖然只有少許的例子是一顆金奈米粒子包於一顆UiO-66,然而這是一個重要的里程,未來需要更多的實驗探討去找到最佳化的金屬奈米粒子包覆效果以及金屬面向跟MOF晶體成長的控制,達到探究機理與催化方向的先驅。
第二部分利用UiO-66結晶,將其鍵結在官能基化的中孔矽材CAR-10上面,合出孔洞分級材料,利用FT-IR、XRD以及SEM確認材料是否成功合成,再以等溫氮氣吸脫附儀及熱重分析儀研究材料的孔洞大小和性質,並將材料送測醇水分離的效率,並顯示有不錯的分離結果,未來希望可以將此類的孔洞分級材料應用在其他領域上。
摘要(英) This thesis is sorted by two parts as below:
Part I: Single encapsulation of gold nanoparticle into robust Zr-based metal-organic framework:Evolution of the alignments toward a single Au nanoparticle embedded into an individual UiO-66 nanocrystal: The realization of metal NPs for specific catalytic application is an intensively studied field where numerous efforts are investigated in modulating their active site via the incorporation of the other materials. Additionally, as small sized NPs possess high surface energy, agglomeration during catalytic reaction is presented. Therefore, materials incorporated with metal NPs should either prevent the agglomeration or provide the specific mechanism to tune their catalytic nature. In this study, Zr-based metal-organic frameworks, UiO-66, with microposity and milder synthetic condition is here investigated as the incorporating compositions while the gold NPs is selected as the prototype. By controlling the crystallization of UiO-66 nanocrystal under organic solution, a single particle of UiO-66 nanocrystal is able to encapsulate only one gold NP inside, Au@UiO-66. Notably, the metal precursor of UiO-66 in this study is selected as ZrOCl2 rather than ZrCl4 which often lead to the erosion of gold NPs. Furthermore, to tune the alignments of the Au@UiO-66, the organic solution in previous experiment is switch to the water-based system which is able provide the polarity to modulate the surfactant CTAB and CTAC for the further advanced alignments of Au@UiO-66. Consequently, the resulting chemically robust Au@UiO-66 materials is expected to provide more scopes to tune the catalytic capability of metal NPs as well as be the prototype to establish other Metal NPs@MOFs.

Part ll: Synthesis of Hierarchical Micro/Mesoporous Structure: Zr-based Metal-Organic Framework on SBA-15 for Enhanced Pervaporation of Water/Ethanol Mixtures: A new type of hierarchical micro/mesoporous structure (UiO-66@CAR-10) was achieved by heteroepitaxial growth of Zr-metal organic framework, UiO-66, on the functionalized silica mesoporous material, CAR-10. The synthesized hierarchical micro/mesoporous UiO-66@CAR-10 structure was examined by various spectroscopic techniques. In addition, the pervaporation measurements of the liquid water/ethanol mixture show that UiO-66@CAR-10/PVA (poly(vinylalcohol) mixed-matrix membrane exhibits enhanced performance both on the permeability and separation factor. Compared to the previous reports, this study provides a simple approach for synthesizing novel hierarchical porous composites exhibiting both advantages of mesoporous materials and microporous materials, which is expected to be useful for gas adsorption, separation, and catalysis.
關鍵字(中) ★ 金奈米粒子
★ 金屬有機骨架材料
★ UiO-66
★ 醇水分離
關鍵字(英) ★ Gold nano particle
★ Metal-organic Frameworks
★ UiO-66
★ Ethanol/Water Separation
論文目次 中文摘要
....................... I
Abstract
....................... II
致謝詞
....................... IV
目錄
........................ V
圖目錄
....................... VIII
表目錄
........................ X
Part I
........................ 1
第一章 緒論
........................ 1
1-1 金屬有機骨架材料 (Metal-organic Frameworks) ........................ 1
1-1-1 簡介
........................ 1
1-1-2 鋯金屬之有機骨架材料 (Zirconium-organic Frameworks) ........................ 3
1-2 催化金屬奈米粒子
........................ 6
1-2-1 物理方法 (Physical Methods)
........................ 7
1-2-1-1 氣體蒸汽法 (Gas Evaporation Method) ........................ 7
1-2-1-2 氣液固生長法 (Vapor Liquid Solid Growth) ........................ 7
1-2-1-3 機械球磨法 (Ball Milling)
........................ 8
1-2-1-4 雷射剝削法 (Laser Ablation Technique) ........................ 8
1-2-2 化學方法 (Chemical Methods)
........................ 9
1-2-2-1 氧化還原法 (Redox Method)
........................ 9
1-2-2-2 光化學法 (Photochemical Method)
........................ 9
1-2-2-3 聲波化學法 (Ultrasonic Irradiation Method)
.........................10
1-2-2-4 溶膠凝膠法 (Sol Gel Method)
.........................10
1-2-2-5 微乳化法之逆微胞法 (Micro Emulsion Synthesis)
.........................10
1-2-2-6 電化學法 (Electrochemical Method)
........................ 11
1-3 研究動機 (Experiment Motivation)
........................ 12
第二章 實驗部分
........................ 13
2-1 實驗藥品
........................ 13
2-2 實驗儀器介紹
........................ 14
2-2-1 X 射線粉末繞射儀 (Powder X-ray Diffractometer,XRD)
........................ 14
2-2-2 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)
........................ 15
2-2-3 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) ................... 15
2-3 實驗步驟
........................ 17
2-3-1 熱溶劑法合成UiO-66-NH2
.........................17
2-3-2 金奈米粒子 Au(PVP) 的合成法
.........................18
2-3-3 合成材料:金奈米粒子包覆於UiO-66-NH2 (Au@UiO-66-NH2)
.........................18
2-3-4 熱溶劑法合成UiO-66-F4
.........................20
2-3-5 金奈米粒子 (Surfactant) 合成
.........................21
2-3-6 合成材料:金奈米粒子包覆於UiO-66-F4 (Au@UiO-66-F4)
.........................22
第三章 結果與討論
........................ 24
3-1 材料:有機相系統合成UiO-66-NH2 的鑑定
........................ 24
3-2 有機相系統合成Au@UiO-66-NH2 的鑑定
........................ 28
3-3 材料:水相系統合成UiO-66-F4 的鑑定
........................ 29
3-4 水相系統合成Au@UiO-66-F4
........................ 32
3-4-1 Au(PVP)@UiO-66-F4 的鑑定
.........................32
3-4-2 Au(CTAB)@UiO-66-F4 的鑑定
.........................33
3-4-3 Au(CTAC)@UiO-66-F4 的鑑定
.........................34
第四章 結論
........................ 38
Part II
........................ 39
第五章 緒論
........................ 39
5-1 分子篩之簡介
........................ 39
5-2 中孔洞分子篩SBA-15 簡介
........................ 40
5-3 界面活性劑
........................ 41
5-3-1 簡介
.........................41
5-3-2 分類
.........................42
5-3-3 微胞的形成與結構
.........................43
5-4 中孔洞材料的合成
........................ 44
5-4-1 中孔洞材料合成條件
.........................44
5-4-2 界面活性劑和矽氧化物的交互作用
........................ 46
5-4-3 中孔洞材料表面官能基修飾
.........................48
5-5 孔洞分級材料
........................ 51
5-6 研究動機
........................ 52
第六章 實驗部分
........................ 53
6-1 實驗藥品
........................ 53
6-2 實驗儀器介紹
........................ 54
6-2-1 氮氣等溫吸/脫附量測 (Nitrogen Adsorption/desorption Isothermal Measurement) .54
6-2-2 熱重分析儀 (Thermogravimetric Analysis,TGA)
.........................56
6-2-3 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared
Spectroscopy,FTIR) .....57
6-3 實驗步驟
........................ 59
6-3-1 SBA-15 合成步驟
........................ 59
6-3-2 合成具羧酸官能基的SBA-15
.........................59
6-3-3 移除中孔洞材料之模板
.........................60
6-3-4 合成微孔材料UiO-66
.........................60
6-3-5 合成分級材料UiO-66@CAR-10
.........................60
第七章 結果與討論
........................ 62
7-1 分級孔洞材料的結構鑑定
........................ 62
7-1-1 XRD 鑑定結果
.........................62
7-1-2 氮氣等溫吸脫附鑑定
.........................63
7-1-3 FT-IR 光譜鑑定
.........................64
7-1-4 SEM 影像鑑定
.........................65
7-1-5 TGA 熱重分析
.........................66
7-1-6 薄膜材料的醇水分離測試
.........................67
第八章 結論
........................ 68
參考文獻
........................ 69
參考文獻 (1) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chemical Reviews 2012, 112, 673.
(2) Liu, X.; Demir, N. K.; Wu, Z.; Li, K. Journal of the American Chemical Society 2015, 137, 6999.
(3) Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. Chemical Society Reviews 2011, 40, 1081.
(4) Huxford, R. C.; Della Rocca, J.; Lin, W. Current Opinion in Chemical Biology 2010, 14, 262.
(5) Li, S.-L.; Xu, Q. Energy & Environmental Science 2013, 6, 1656.
(6) Stock, N.; Biswas, S. Chemical Reviews 2012, 112, 933.
(7) Hu, P.; Morabito, J. V.; Tsung, C.-K. ACS Catalysis 2014, 4, 4409.
(8) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. Advanced Materials 2014, 26, 4056.
(9) Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. Journal of the American Chemical Society 2014, 136, 17714.
(10) Devic, T.; Serre, C. Chemical Society Reviews 2014, 43, 6097.
(11) Wismann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Microporous and Mesoporous Materials 2012, 152, 64.
(12) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Journal of the American Chemical Society 2008, 130, 13850.
(13) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Chemistry of Materials 2010, 22, 6632.
(14) Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Chemistry of Materials 2014, 26, 4068.
(15) Gutov, O. V.; Bury, W.; Gomez-Gualdron, D. A.; Krungleviciute, V.; Fairen-Jimenez, D.; Mondloch, J. E.; Sarjeant, A. A.; Al-Juaid, S. S.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Chemistry – A European Journal 2014, 20, 12389.
(16) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angewandte Chemie International Edition 2012, 51, 10307.
(17)Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D. Inorganic Chemistry 2015, 54, 4862.
(18) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.; Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.; Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G. Journal of Materials Chemistry A 2015, 3, 3294.
(19) Reinsch, H.; Bueken, B.; Vermoortele, F.; Stassen, I.; Lieb, A.; Lillerud, K.-P.; De Vos, D. CrystEngComm 2015, 17, 4070.
(20) Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chemical Communications 2013, 49, 9449.
(21) Liang, W.; Coghlan, C. J.; Ragon, F.; Rubio-Martinez, M.; D′Alessandro, D. M.; Babarao, R. Dalton Transactions 2016, 45, 4496.
(22) Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D. Crystal Growth & Design 2016, 16, 2295.
(23) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chemistry – A European Journal 2011, 17, 6643.
(24) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chemistry of Materials 2011, 23, 1700.
(25) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Journal of the American Chemical Society 2013, 135, 10525.
(26) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Chemistry of Materials 2016, 28, 3749.
(27) Ozin, G. A. Advanced Materials 1992, 4, 612.
(28) Henglein, A. Chemical Reviews 1989, 89, 1861.
(29) Gleiter, H. Progress in Materials Science 1989, 33, 223.
(30) Fendler, J. H. Chemical Reviews 1987, 87, 877.
(31) Takeuchi, Y.; Ida, T.; Kimura, K. The Journal of Physical Chemistry B 1997, 101, 1322.
(32) Keisaku, K. Bulletin of the Chemical Society of Japan 1984, 57, 1683.
(33) Yatsuya, S.; Kasukabe, S.; Uyeda, R. Journal of Crystal Growth 1974, 24, 319.
(34) Naoki, S.; Keisaku, K. Bulletin of the Chemical Society of Japan 1989, 62, 1758.
(35) Keisaku, K. Bulletin of the Chemical Society of Japan 1987, 60, 3093.
(36) Keisaku, K.; Shunji, B. Bulletin of the Chemical Society of Japan 1983, 56, 3578.
(37) Hu, J.; Odom, T. W.; Lieber, C. M. Accounts of Chemical Research 1999, 32, 435.
(38) Rak, M. J.; Friscic, T.; Moores, A. Faraday Discussions 2014, 170, 155.
(39) Lin, H.; Qin, L. Z.; Hong, H.; Li, Q. Journal of Nano Research 2016, 40, 174.
(40) Fojtik, A.; Henglein, A. Berichte der Bunsen-Gesellschaft 1993, 97, 252.
(41) Neddersen, J.; Chumanov, G.; Cotton, T. M. Appl. Spectrosc. 1993, 47, 1959.
(42) Jeon, J.-S.; Yeh, C.-S. Journal of the Chinese Chemical Society 1998, 45, 721.
(43) Wu, K. T.; Yao, Y. D.; Wang, C. R. C.; Chen, P. F.; Yeh, E. T. Journal of Applied Physics 1999, 85, 5959.
(44) Yeh, M.-S.; Yang, Y.-S.; Lee, Y.-P.; Lee, H.-F.; Yeh, Y.-H.; Yeh, C.-S. The Journal of Physical Chemistry B 1999, 103, 6851.
(45) Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H. The Journal of Physical Chemistry B 2000, 104, 9111.
(46) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Analytical Chemistry 1995, 67, 735.
(47) Esumi, K.; Wakabayashi, M.; Torigoe, K. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 55.
(48) Henglein, A.; Meisel, D. Langmuir 1998, 14, 7392.
(49) Yonezawa, Y.; Sato, T.; Ohno, M.; Hada, H. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1987, 83, 1559.
(50) Arul Dhas, N.; Cohen, H.; Gedanken, A. The Journal of Physical Chemistry B 1997, 101, 6834.
(51) Nagata, Y.; Watananabe, Y.; Fujita, S.-i.; Dohmaru, T.; Taniguchi, S. Journal of the Chemical Society, Chemical Communications 1992, 1620.
(52) Lisiecki, I.; Pileni, M. P. Journal of the American Chemical Society 1993, 115, 3887.
(53) Chang, C.-L.; Fogler, H. S. Langmuir 1997, 13, 3295.
(54) Chen, D.-H.; Wu, S.-H. Chemistry of Materials 2000, 12, 1354.
(55) Reetz, M. T.; Helbig, W. Journal of the American Chemical Society 1994, 116, 7401.
(56) Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. The Journal of Physical Chemistry B 1997, 101, 6661.
(57) Gu, Z.; Chen, L.; Duan, B.; Luo, Q.; Liu, J.; Duan, C. Chemical Communications 2016, 52, 116.
(58) Liu, H.; Yang, Q. CrystEngComm 2011, 13, 5488.
(59) Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K. Journal of the American Chemical Society 2014, 136, 10561.
(60) Tulig, K.; Walton, K. S. RSC Advances 2014, 4, 51080.
(61) Wang, S.; Morris, W.; Liu, Y.; McGuirk, C. M.; Zhou, Y.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Angewandte Chemie International Edition 2015, 54, 14738.
(62) Abdulkin, P.; Precht, T. L.; Knappett, B. R.; Skelton, H. E.; Jefferson, D. A.; Wheatley, A. E. H. Particle & Particle Systems Characterization 2014, 31, 571.
(63) Das, A.; Chadha, R.; Maiti, N.; Kapoor, S. Journal of Nanoparticles 2014, 2014, 7.
(64) Sakai, T.; Enomoto, H.; Torigoe, K.; Sakai, H.; Abe, M. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 347, 18.
(65) Grutzner, A. The Journal of Physical Chemistry 1932, 37, 149.
(66) Everett, D. H. In Pure and Applied Chemistry 1972; Vol. 31, p 577.
(67) Vinu, A.; Miyahara, M.; Hossain, K. Z.; Takahashi, M.; Balasubramanian, V. V.; Mori, T.; Ariga, A. Journal of Nanoscience and Nanotechnology 2007, 7, 828.
(68) Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S. Biomaterials 2008, 29, 4045.
(69) H. Clark, J.; J. Macquarrie, D. Chemical Communications 1998, 853.
(70) Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y. Advanced Drug Delivery Reviews 2008, 60, 1278.
(71) Giraldo, L.; Moreno-Pirajan, J. C. Materials Research 2013, 16, 745.
(72) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
(73) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317.
(74) Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M. Advanced Materials 1998, 10, 161.
(75) Stein, A.; Melde, B. J.; Schroden, R. C. Advanced Materials 2000, 12, 1403.
(76) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72, 1525.
(77) Yan, Z.; Tao, S.; Yin, J.; Li, G. Journal of Materials Chemistry 2006, 16, 2347.
(78) Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S. Journal of Materials Chemistry 2007, 17, 1216.
(79) Tadros, P. D. T. F. Applied surfactants: principles and applications, 2005.
(80) ALOthman, Z. Materials 2012, 5, 2874.
(81) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angewandte Chemie International Edition 2006, 45, 3216.
(82) Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L. Chemistry of Materials 1994, 6, 2317.
(83) Hartmann, M.; Kostrov, X. Chemical Society Reviews 2013, 42, 6277.
(84) Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W. Advanced Materials 2011, 23, 2602.
(85) Lee, Y. J.; Lee, J. S.; Park, Y. S.; Yoon, K. B. Advanced Materials 2001, 13, 1259.
(86) Rhodes, K. H.; Davis, S. A.; Caruso, F.; Zhang, B.; Mann, S. Chemistry of Materials 2000, 12, 2832.
(87) Parlett, C. M. A.; Wilson, K.; Lee, A. F. Chemical Society Reviews 2013, 42, 3876.
(88) Balilehvand, S.; Hashemianzadeh, S. M.; Razavi, S.; Karimi, H. Adsorption 2012, 18, 13.
(89) Wei, J.-S.; Ding, H.; Wang, Y.-G.; Xiong, H.-M. ACS Applied Materials & Interfaces 2015, 7, 5811.
(90) Ren, P. REN21 Secretariat: Paris, France 2015.
(91) Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. Journal of the American Chemical Society 1940, 62, 1723.
(92) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. Journal of the American Chemical Society 1951, 73, 373.
(93) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chemistry of Materials 2000, 12, 1961.
(94) Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M. Chemical Communications 2009, 5018.
(95) Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schuth, F. Chemistry of Materials 2004, 16, 2918.
(96) Sue, Y.-C.; Wu, J.-W.; Chung, S.-E.; Kang, C.-H.; Tung, K.-L.; Wu, K. C. W.; Shieh, F.-K. ACS Applied Materials & Interfaces 2014, 6, 5192.
(97) Tao, J.; Xiong, J.; Jiao, C.; Zhang, D.; Lin, H.; Chen, Y. ACS Sustainable Chemistry & Engineering 2016, 4, 60.
(98) Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. CrystEngComm 2015, 17, 6434.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明