博碩士論文 103223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.144.21.195
姓名 林俊翰(Chun-Han Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 釕金屬染料敏化之太陽能電池元件的 最佳化工程及光伏性質研究
(Device Fabrication and Photovoltaic Properties of Dye-Sensitized Solar Cell (DSC) Based on Ruthenium Sensitizers)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSC)因成本低、製作簡易、多色彩等優點,深具商業化應用之潛力。DSC中製作光電極所用之TiO2顆粒的粒徑大小對於元件之光電轉換效率具有極大影響,小粒徑之TiO2顆粒擁有較大的表面積,染料吸附量較大,而大粒徑之TiO2顆粒的光散射能力較強,且燒結後的膜具有較大孔洞利於電解液的流動。本篇論文使用不同粒徑大小的T5 (20 nm)、T1 (25 nm)、C1 (40 nm)與SC (400nm)所配成的TiO2漿料交錯塗佈在導電玻璃(FTO)上,並以Ethanol進行TiO2膜的平整化,減少TiO2層與層間的空隙,最後所得的含四層TiO2膜之光電極(FTO/T5/C1/T5/SC),搭配釕金屬錯合物染料DUY2並以25 μm Surlyn spacer 進行元件組裝後,有良好的光伏表現,光電轉換效率最高可達10.02%。此外,將最佳TiO2膜結構之光電極應用於DUY1~DUY4染料,其中DUY2染料所敏化之元件有最高光電轉換效率,原因在於DUY2染料吸附於TiO2膜時有最大的吸收度,且DUY2染料結構中兩個-CF3取代基的位置利於電解液中的I- 靠近染料金屬中心使染料還原再生,因此有較短的染料還原再生時間,使得在四個染料中,DUY2染料所敏化之元件有最高的短路電流密度值,為18.40 mA/cm2。
摘要(英) Great attention has been devoted to the new generation dye-sensitized solar cell (DSC) due to its several advantages such as colorful, easy fabrication and low cost. The particle size of TiO2 of the photoelectrode plays an important role in the photovoltaic conversion efficiency of DSC. Smaller sized particle has larger surface area but lacks light-scattering ability. By contrast, larger particle has stronger light scattering ability, the resulting film has good porosity in favour of electrolyte diffusing although it has smaller surface area. How to arrange the large and small sized particles in the photoelectrode is an important task for achieving high cell performance. This study focuses on the preparation of photoelectrode with multiple TiO2 layers made from different particle sizes (T5: 20 nm, T1: 25 nm, C1: 40 nm, SC: 400 nm). Each TiO2 layer was further leveled with ethanol vapor before calcining. It was found that the architecture of photoelectrode composed of four TiO2 layer (FTO glass/T5/C1/T5/SC) achieves highest efficiency of 10.2% when applied to DUY2 sensitizer. Furthermore, for the optimal photoelectrode DUY2 sensitizer has the highest Jsc (18.40 mA/cm2) and efficiency amongst the ruthenium sensitizers DUY1 ~ 4 studied here, due to its high absorption, high dye-loading and less structure hindrance for restricting the RuIII-I- interaction.
關鍵字(中) ★ 染料敏化太陽能電池
★ 二氧化鈦
★ 釕金屬染料
★ 平整化
★ 多數層膜
關鍵字(英) ★ Dye-Sensitized Solar Cell
★ TiO2
★ Ruthenium Sensitizer
★ level
★ Multiple layer
論文目次 【目錄】
中文摘要 I
Abstract II
謝誌 III
【目錄】 IV
圖目錄 IX
表目錄 XIV
第一章、序論 1
1.1 前言 1
1.2 染料敏化太陽能電池工作原理 4
1.3 光電極(Photo electrode) 6
1.3.1 光電極中TiO2膜的形貌 6
1.3.2 光電極中TiO2的粒徑大小對於所組裝之元件的光電轉換效率影響 8
1.3.3 大粒徑TiO2 所製備的光散射層(light-scattering layer)對於所組裝之元件的光電轉換效率影響 10
1.3.4 多層TiO2 膜結構的光電極對於所組裝之元件的光電轉換效率影響 12
1.4 染料(Dye) 16
1.5 電解質(Electrolyte) 20
1.6 研究動機 26
第二章、實驗方法 28
2.1 實驗藥品與儀器 28
2.1.1 本論文實驗所用藥品 28
2.1.2 本論文實驗所用材料 29
2.1.3 本論文實驗所用儀器 29
2.2 TiO2奈米顆粒的合成與漿料製備 30
2.2.1 TiO2奈米顆粒的合成 30
2.2.2 適用於網印機 ( Screen Printing )鍍膜之二氧化鈦漿料的製備 31
2.3 染料敏化太陽能電池元件的組裝 32
2.3.1光電極的製備與修飾 32
2.3.2 Pt對電極的製備 34
2.3.3 太陽能電池元件的組裝 34
2.4 儀器分析與樣品製備 36
2.4.1 太陽光模擬器及光電轉換效率測量 36
2.4.2 太陽能電池外部量子效率量測 37
2.4.3 交流阻抗分析儀 38
2.4.4紫外光/可見光/近紅外光吸收光譜 40
2.4.5 光強度調制光電流/光電壓分析儀 41
2.4.6 掃描式電子顯微鏡 42
第三章、結果與討論 44
3.1 DUY1~4染料前置軌域能階與所敏化之元件光伏表現 44
3.2 DUY2為敏化劑之元件最佳化條件探討 49
3.2.1 碘系統電解質的組成對元件光電轉換效率的影響 49
3.2.2 熱塑性Surlyn Spacer的厚度對元件光電轉換效率的影響 51
3.2.3 TiO2膜的厚度對元件光電轉換效率的影響 53
3.2.4 TiO2粒子大小及TiO2膜結構對於元件光電轉換效率的影響 55
3.2.5 TiO2膜的平整化對元件光電轉換效率的影響 58
3.2.6多層TiO2膜結構的光電極所組裝之元件的再現性測試 60
3.2.7 DUY1~4染料所敏化之元件的光電表現 63
3.3 元件的光伏性質探討 65
3.3.1 DUY1~4染料吸附於TiO2膜上的UV/Vis吸收光譜圖 65
3.3.2 DUY1~4染料所敏化之元件的瞬態吸收光譜(Transient Absorption Spectroscopy, TAS) 70
3.3.3 電子在TiO2膜上的擴散係數 73
3.3.4 DUY1~4染料所敏化元件的內部電阻探討 75
3.3.5 電子在TiO2膜上的生命期 77
第四章、結論 81
參考文獻 82
參考文獻 參考文獻
[1] http://www-fa.upc.es/personals/fluids/oriol/ale/eolss.pdf
[2] http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=
2&aid=2
[3] West, W.; Photographic Science and Engineering, 1974, 18, 35-40
[4] J. Moser; Monatsh. Chemie, 1887, 8, 373.
[5] H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402-403
[6] B. O′Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-739
[7] Thavasi, V.; Renugopalakrishnan, V.; Jose, R. and Ramakrishna,
“Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, S. Mater. Sci. Eng. R, 2009, 63, 81-99
[8] B. Tan; Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, J. Phys. Chem. B., 2006, 110, 15932-15938
[9] S. Ito.; N. Murakami, P. Comte; P. Liska, C. Grȁtzel, M. K. Nazeeruddin, M. Grȁtzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 2008, 516, 4613-4619
[10] Linhua Hu; Songyuan Dai; Jian Weng; Shangfeng Xiao; Yifeng Sui; Yang Huang; Shuanghong Chen; Fantai Kong; Xu Pan; Linyun Liang; and Kongjia Wang; “Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules”, J. Phys. Chem., 2007, 111, 358-362
[11] Kenji Kakiage; Yohei Aoyama; Toru Yano; Keiji Oya; Jun-ichi Fujisawa and Minoru Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894-15897
[12] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel M., “Conversion of Light to Electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
[13] Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M., “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
[14] Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc., 2005, 127, 16835-16847.
[15] Chia-Yuan Chen; Mingkui Wang; Jheng-Ying Li; Nuttapol Pootrakulchote; Leila Alibabaei; Cevey-ha Ngoc-le; Jean-David Decoppet; Jia-Hung Tsai; Carole Grätzel; Chun-Guey Wu; Shaik M. Zakeeruddin; and Michael Grätzel; “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano, 2009, 3, 3103-3109.
[16] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L. and Pettersson, H.; “ Dye-Sensitized Solar Cells”, Chem. Rev., 2010, 110, 6595-6663.
[17] Nusbaumer, H.; Moser, J. E.; Zakeeruddin, S. M.; Nazeeruddin, M. K. and Grätzel, M.; “CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells”, J. Phys. Chem. B, 2001, 105, 10461–10464
[18] Yella, A.; Lee, H. W.; Tsao, H. N; Yi, C.; Chandiran, A. K.; Nazeeruddin, Md. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M. and Grätzel, M.; “Electrolyte Exceed 12 Percent Efficiency Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox”, Science, 2011, 334, 629-633
[19] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry– Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N. and Gräetzel M.; “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes” , J. Am. Chem. Soc., 1993, 115, 6382-6390.
[20] Schlichthorl, G.; Huang, S. Y.; Sprague, J. and Frank, A. J.; “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B., 1997, 101, 8141-8155.
[21] Koh, T. M.; Nonomura, K.; Mathews, N.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G. and Grimsdale, A. C.; “Influence of 4-tert-Butylpyridine in DSCs with CoII/III Redox Mediator”, J. Phys. Chem. C, 2013, 117, 15515−15522
[22] Bai, Y.; Zhang, J.; Wang, Y.; Zhang, M. and Wang, P.; “Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid”, Langmuir, 2011, 27, 4749–4755.
[23] Michael Grätzel, “Dye-Sensitized Solar Cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145-153.
[24] Xavier, A. Jeanbourquin; Xiaoe, Li; ChunHung, Law; Piers, R.F. Barnes; Robin, Humphry-Baker; Peter, Lund; Muhammad, I. Asghar; and Brian, C. O’Regan, “ Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface”, J. Am. Chem. Soc., 2014, 136, 7286−7294.
[25] http://www.nrel.gov/ncpv/
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明