博碩士論文 103223062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:155 、訪客IP:3.17.173.165
姓名 莊竣雅(Chun-Ya Chuang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡探討添加劑對於銅沉積於金(111)的影響
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用循環伏安法(CV)和掃描式電子穿隧顯微鏡(STM)探討氯離子、
聚二硫二丙烷磺酸鹽(SPS)及聚乙二醇(PEG)對於銅沉積在金(111)上的影響。首先,對銅沉積於氯離子修飾金(111)上進行觀察,一般而言,氯離子對於銅的還原沉積為加速反應,但是當銅離子的濃度低於0.1mM 時,在溶液中加入少量的氯離子並不會加速銅的沉積速度,反而有抑制的效果;氯離子濃度過高時,對銅沉積也有抑制的效果。在0.1M 硫酸電解液中含有0.1mM 銅離子與0.1mM 氯離子時,利用改變不同的電位來影響銅沉積的形貌,發現若是直接將電位從0.5V 調整至-0.4V 時,和慢慢將電位往負調整至銅沉積電位使銅沉積的方法相比,銅沉積的方式主要以2D 方向成長。
在SPS 對銅沉積的影響中,在電位為0.8V 時,發現將SPS 修飾在金(111)上會以(6 × 2√21)吸附在金表面上,在in situ STM 觀察到,經SPS 修飾金後加入銅離子進行銅還原沉積,將電位往負電位調整,銅會以3D 球狀方式沉積,而在添加實驗與氯離子共吸實驗中,也有相同的狀況。
在PEG 對銅沉積的影響中,發現PEG 本身抑制銅的是因為本身的黏稠性
使銅在溶液中不易擴散反應,使銅的沉積速度下降,在STM 觀察銅沉積的形貌,發現其與純銅沉積的形貌相似,將電位從0.5V 調整至-0.4V 時,可以發現銅從原本的3D 成長變成2D 成長,其面上為硫酸氫根以(√3 × √7)吸附在銅上。在PEG 與氯離子對銅沉積的影響中,由於PEG 會與氯離子形成一抑制膜,故將電位調整至0.1V 時,才會有過電位銅開始沉積,沉積電位較負,而沉積出的銅仍是以3D 方向成長,但將電位從0.5V 調整至-0.4V 時,銅會從台階下緣與平慢上開始沉積,主要以2D 方向成長,較先前的更平整,在其平面上可發現氯離子吸附在上面,發現有亮暗點之差,可能是有PEG 吸附在氯離子上所造成的。
摘要(英) In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) have been used to investigate the effect of chloride ion, bis-3-sodiumsulfopropyl disulfide and polyethylene glycol on the electrodeposition of copper onto Au(111). Chloride ion can accelerate the reduction rate of copper ion, but this effect is insignificant when the copper concentration is lower than 0.1mM. Stepping the potential from 0.5 to -0.4 V to observe copper deposition in 0.1M Sulfuric acid and 0.1mM KCl with STM, which reveals 2D deposition mode of Cu on the ordered Au(111) electrode. This contrasts markedly with the 3D growth of Cu on Au(111) in a sulfate medium. The adsorption of chloride on Cu deposit is confirmed by STM imaging. The adsorbed Cl- adlayer increases the surface diffusion rate of Cu adatoms, helping them to transfer across the step barrier.
SPS molecules are adsorbed in highly ordered array at 0.8 V, characterized as Au(111) - (6 × 2√21). In situ STM imaging reveals that Cu deposition grows in 3D in 0.1mM SPS, which is proposed to result from slow surface diffusion rate of Cu adatoms likely capped by segregated SPS molecules. However, it is intriguing that it is bisulfate anions structure, not the SPS, imaged by STM. When Cu deposit is stripped off, STM images a defected adlayer of SPS.
The effect of PEG on Cu deposition on Au(111) is always suppressing, regardless of the presence of Cl-, which results from PEG’s high viscosity and slow-down of Cu2+ diffusion rate. STM imaging reveals rough Cu deposit when the potential is made negatively in steps in the presence of PEG6000 in the sulfate media. By contrast, abrupt adjusting from 0.5 to -0.4 V in the same medium, the copper film grows laterally, yielding a Cu smooth film on which a highly ordered bisulfate adlayer characterized as (√3 × √7) is imaged. Copper deposition in the presence of PEG and Cl yielded different processes and film morphology. The synergistic effect of PEG and Cl- indeed suppresses Cu deposition, as evidenced by the negative shift of the onset potential of copper deposition. STM imaging shows that Cu deposit grows in 3D when the potential is gradually made negative. By contrast, switching the potential abruptly from 0.5 to -0.4 V, Cu deposit nucleated at steps and on terraces, followed by
lateral growth and coalescence of Cu islands at the latter stage.
關鍵字(中) ★ 銅沉積
★ 掃描式電子穿隧顯微鏡
★ 金(111)
★ 添加劑
★ PEG
★ SPS
★ 氯離子
★ 分子修飾
★ 加速劑
★ 抑制劑
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 VI
目錄 V
圖目錄 VIII
表目錄 XII
第一章、 緒論 1
1-1 銅製程技術 1
1-1-1 電鍍銅填孔技術發展 1
1-1-2 有機添加劑的種類及作用原理 2
1-2 薄膜成長理論 5
1-2-1 薄膜成長模式 5
1-2-2 影響薄膜成長的因素 6
1-3 文獻回顧 7
1-4 研究動機 9
第二章、 實驗部分 12
2-1 化學藥品 12
2-2 氣體及耗材 12
2-2-1 氣體 12
2-2-2 金屬線材 12
2-3 儀器設備 13
2-3-1 循環伏安儀(Cyclic Voltammogram,CV) 13
2-3-2 掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscopy,STM) 13
2-4 實驗步驟 13
2-4-1 CV 電極製備 13
2-4-2 STM 電極製備 14
2-4-3 探針製作 14
2-4-4 循環伏安法(CV)的前處理 14
2-4-5 掃描式穿隧電子顯微鏡(STM)的前處理 14
第三章、 加速劑對銅沉積在金(111)上的影響 16
3-1 電化學鍍銅於金(111) 16
3-1-1 銅沉積於金(111)的CV 圖 16
3-1-2 銅沉積於金(111)上的STM 圖 16
3-2 氯離子對電化學鍍銅於金(111)的影響 17
3-2-1 氯化鉀(KCl)對銅沉積在金(111)上之CV 圖 17
3-2-2 氯化鉀(KCl)對銅沉積在金(111)上之STM 圖 19
3-3 聚二硫二丙烷磺酸自組裝分子膜於金(111)上的電化學特性及吸附行為 20
3-3-1 SPS 分子膜修飾在金(111)上之CV 圖 20
3-3-2 SPS 分子膜修飾在金(111)上之STM 圖 21
3-4 SPS 分子膜修飾對電化學鍍銅於金(111)的影響 21
3-4-1 銅沉積於SPS 分子膜修飾在金(111)上之CV 圖 21
3-4-2 銅沉積於SPS 分子膜修飾在金(111)上之STM 圖 22
3-4-3 銅沉積於氯離子與SPS 分子膜修飾在金(111)上之CV 圖 23
3-4-4 銅沉積於氯離子與SPS 分子膜修飾在金(111)上之STM 圖 23
3-5 SPS 添加對電化學鍍銅於金(111)的影響 24
3-5-1 SPS 對銅沉積在金(111)上之CV 圖 24
3-5-2 SPS 對銅沉積在金(111)上之STM 圖 25
3-6 SPS 與氯離子對電化學鍍銅於金(111)的影響 25
3-6-1 SPS 與氯化鉀(KCl)對銅沉積在金(111)上之CV 圖 25
3-6-2 SPS 與氯化鉀(KCl)對銅沉積在金(111)上之STM 圖 26
3-7 結論 26
第四章、 抑制劑對銅沉積在金(111)上的影響 28
4-1 聚乙二醇 (PEG)對電化學鍍銅在金上的影響 28
4-1-1 PEG 修飾於金(111)上之CV 圖 28
4-1-2 PEG 修飾於金(111)上之STM 圖 28
4-1-3 PEG 對銅沉積在金(111)上之CV 圖 29
4-1-4 PEG 對銅沉積在金(111)上之STM 圖 29
4-2 聚乙二醇 (PEG)與氯離子對電化學鍍銅在金上的影響 30
4-2-1 PEG 與氯化鉀(KCl)對銅沉積在金(111)上之CV 圖 30
4-2-2 PEG 與氯化鉀(KCl)對銅沉積在金(111)上之STM 圖 31
4-3 結論 32
第五章、 參考文獻 78
參考文獻 (1) Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H. IBM J.Res.&Dev.1998, 42, 567.
(2) Zukauskaite, N.; Malinauskas, A. Sov. Electrochem. 1989, 24, 1564.
(3) Healya, J. P.; Pletchera, D.; Goodenough, M. J. Electroanal. Chem. 1992, 338,167.
(4) Yokoi, M., S. Konishi, T. Hayashi, Denki kagaku,1984, 52,218
(5) Healy,J.P. and D. Pletcher, J. Electroanal. Chem. 1992,388,155
(6) Kelly, J.J. and A.C. West, J. Electrochem. Soc.1998,145(10),3472
(7) Kelly, J.J. and A.C. West, J. Electrochem. Soc.1998,145(10),3477
(8) Bonou, L., et al., Electrochim. Acta, 2002,47,4139
(9) P. Allongue, F. Maroun, Electrodeposited magnetic layers in the ultrathin limit.MRS bulletin, 2010, 35, 761.
(10) J.A.C. Bland, B. Heinrich, Ultrathin Mag. StructureⅠ, Berlin Heidelberg, 1994,91
(11) Feng, Z. V.; Li, X.; Gewirth, A. A. J. Phys. Chem. B 2003, 107, 9415.
(12) Kim, J.-W.; Lee, J.-Y.; Park, S.-M. Langmuir 2003, 20, 459.
(13) Dow, W.-P.; Yen, M.-Y.; Lin, W.-B.; Ho, S.-W. J. Electrochem. Soc. 2005,152,769.
(14) Walker, M. L.; Richter, L. J.; Moffat, T. P. J. Electrochem. Soc. 2006, 153, 557.
(15) Walker, M. L.; Richter, L. J.; Moffat, T. P. J. Electrochem. Soc. 2007, 154, 277.
(16) Schneeweiss, M. A.; Kolb, D. M. physica status solidi (a) 1999, 173, 51.
(17) P.J. Goddard;R.M. Lambert Surface Scicncc 67 1977,1,194
(18) K. Krug;Y.F. Liu;W.P. Dow; J. Phys. Chem. C 2012, 116, 17507
(19) Sang-Eun Bae; Andrew A. Gewirth ,Langmuir 2006, 22, 10315
(20) G. Nagy; T. Wandlowsk; Langmuir 2003, 19, 10271
(21) M. E. Huerta Garrido; M. D. Pritzker; J. Electrochem. Soc. 2008,155(4),332
(22) M. E. Huerta Garrido; M. D. Pritzker; J. Electrochem. Soc. 2009,156(5) 175
(23) M. Petri; Dieter M. Kolba,; U. Memmert, H. Meyer, J. Electrochem. Soc.2004,151(12) 793
(24) Nagy, Z. ; Blaudeau, J.P. ; Hung, N.C. ; Curtiss, L.A. ; Zurawski, D.J. J.Electrochem. Soc. 1995, 142, 87.
(25) Yanson, Y.; Frenken, J. W. M.; Rost, M. J. Phys. Chem. Chem. Phys. 2011, 13,16095
(26) Chiu, Y. D.; Dow, W. P.; Krug, K.; Liu, Y. F.; Lee, Y. L.; Yau, S.-L. Langmuir2012,28, 14476.
(27) N. Batina, T. Will and D. M. Kolb, Faraday Discuss., 1992, 94, 93
(28) M. Wunsche,W. Beckmann, H. Meyer, Elrctrochlmica Acta,1993, 38,647
(29) D. Wayne Suggs and Allen J. Bard, J. Am. Chem. Soc. 1994,116, 10725
(30) G. A. Hope, G. M. Brown, Journal of Applied Electrochemistry 1995,25,890
(31) P. Broekmann , M. Wilms, M. Kruft, C. Stuhlmann, K. Wandelt, J. Electroanal.Chem.,1999,467, 307
(32) H. Hagenstrom, M. A. Schneeweiss, D. M. Kolb, Langmuir ,1999, 15, 7802
(33) H. Hagenstrom, M.A. Schneeweiss, D.M. Kolb, Electrochimica Acta, 1999,45,1141
(34) W.K. Paik,S. Eu,K. Lee, S. Chon,M. Kim, Langmuir 2000, 16, 10198
(35) S. Chon,W. Paik, Phys. Chem. Chem. Phys., 2001, 3, 3405
(36) Min Tan, John N. Harb, J. Electrochem. Soc.,2003,150,420
(37) Z. V. Feng, X. Li, A. A. Gewirth, J. Phys. Chem. B 2003, 107, 9415
(38) M. Petri, D. M. Kolb,U. Memmertb, H. Meyer, Electrochimica Acta 2003,49,175
(39) M. Petri, D. M. Kolb,U. Memmertb, H. Meyer, Electrochimica Acta 2003,49,183
(40) W. Paik,S. Han,W. Shin,Y. Kim, Langmuir 2003, 19, 4211
(41) J.W. Kim, J.Y. Lee,S.M. Park, Langmuir 2004, 20, 459
(42) M. Petri, D. M. Kolb,U. Memmert,H. Meyer, J. Electrochem. Soc. 2004,151,797
(43) M. Petri, D. M. Kolb,U. Memmert,H. Meyer, J. Electrochem. Soc. 2004,151,793
(44) T. P. Moffat, D. Wheeler,D. Josell, J. Electrochem. Soc. 2004,151,262
(45) J.W. Kim, J.Y. Lee, S.M. Park, Langmuir 2004, 20, 459
(46) K. R. Hebert, J. Electrochem. Soc. 2005,152,283
(47) S.K. Kim, D. Josell, T. P. Moffat, J. Electrochem. Soc. 2006,153,616
(48) S. N. Jenq, C. C. Wan,Y. Y. Wang, J. Electroanal. Chem., 2007,609,68
(49) C.C. Hung,Y.L. Wang,W.H Lee,S.C Chang, J. Electrochem. Soc. 2008,155,669
(50) C.C. Hung,Y.L. Wang,W.H Lee,S.C Chang, J. Electrochem. Soc. 2008,155,329
(51) Z.Y. Jian, T.Y. Chang, Y.C. Yang, W.P. Dow, S.L. Yau,Y.L. Lee, Langmuir 2009,25, 179
(52) T. P. Moffat, L.Y. Ou Yang, J. Electrochem. Soc. 2010,157,228
(53) Y.D. Chiu, W.P. Dow, Y.F. Liu, Y.L. Lee, S.L. Yau, Int. J. Electrochem. Sci.2011,6,3416
(54) H.L. Tu, P.Y. Yen,S. Chen, S.L. Yau, Langmuir 2011, 27, 6801
(55) A. M´endez, Y. Meas,R. Ortega-Borges,G. Trejoz, J. Electrochem. Soc.2012,159,48
(56) Y.L. Fu,S.z Chen,S.L. Yau,W.P. Dow, Y.L. Lee, J. Electrochem. Soc.2013,160,3295
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2016-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明