博碩士論文 103225004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.237.66.86
姓名 施嘉翰(Jia-Han Shih)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution★ Likelihood inference on bivariate competing risks models under the Pareto distribution
★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models
★ Copula-based Markov chain model with binomial data★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data
★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究由Bairamov以及Kotz (2002)提出的廣義Farlie-Gumbel-Morgenstern (FGM)聯結函數(copula)的數學與統計性質。首先,論文的第一部分回顧在廣義FGM聯結函數下,一些相關係數(dependence measure)的性質,其中包括斯皮爾曼相關係數(Spearman’s rho)、肯德爾相關係數(Kendall’s tau)、Kochar and Gupta’s dependence measure以及布萊斯特係數(Blest’s coefficient),我們推導出了一些相關係數之間的關係、布萊斯特係數以及化簡過去文獻裡Kochar and Gupta’s dependence measure的結果。論文的第二部分主要探討在廣義FGM聯結函數下的相依競爭風險(dependent competing risks)分析,我們推導出了在FGM聯結函數模型下sub-distribution function的表示法,這是過去文獻中沒有討論過的,我們也證明我們的表示法在Burr III邊際分配下推廣了先前由Domma以及Giordano (2013)所提出的可靠度係數(reliability measure)。我們針對此篇論文提出的相依競爭風險模型使用最大概似估計法(Maximum likelihood estimation)來做參數估計,其中使用了隨機牛頓–拉弗森演算法(Randomized Newton-Raphson Algorithm)來最大化概似函數,我們設計了模擬研究來確認本篇論文模型以及方法的正確性,最後使用一組真實資料來做分析。
摘要(英) The thesis studies mathematical and statistical properties of the generalized Farlie-Gumbel-Morgenstern (FGM) copula (Bairamov and Kotz 2002). The first part of the thesis reviews several properties of dependence measures (Spearman’s rho, Kendall’s tau, Kochar and Gupta’s dependence measure, and Blest’s coefficient) under the generalized FGM copula. We give a few remarks on the relationship among the dependence measures, derive Blest’s coefficient, and suggest simplifying the previously obtained expression of Kochar and Gupta’s dependence measure. The second part of the thesis considers dependent competing risks analysis under the generalized FGM copula model. We obtain the expression of sub-distribution functions under the generalized FGM copula model, which has not been discussed in the literature. With the Burr III margins, we show that our expression has a closed form and generalizes the reliability measure previously obtained by Domma and Giordano (2013). We develop maximum likelihood estimation under the proposed competing risks models with a randomized Newton-Raphson algorithm for numerical maximization. We conduct simulations to check the correctness of our method and analyze a real dataset for illustration.
關鍵字(中) ★ 布萊斯特係數
★ 肯德爾相關係數
★ 可靠度
★ 斯皮爾曼相關係數
★ 存活分析
關鍵字(英) ★ Blest′s coefficient
★ Kendall′s tau
★ Reliability
★ Spearman′s rho
★ Survival analysis
論文目次 Contents
Chapter 1 Introduction …………………………………………………………………….1
Chapter 2 Background ……………………………………………………….…………….4
2.1 Copula …………………………………………………….………….……………..4
2.2 FGM copula …………………………………………………..…………………….4
Chapter 3 Dependence measures under the generalized FGM copula ……...……………5
3.1 Spearman’s rho and Kendall’s tau ……………………………….…...…………….5
3.2 Blest’s coefficient and symmetrized Blest’s coefficient ……………………………..8
3.3 Kochar and Gupta’s dependence measure ……………………….…….……………11
Chapter 4 Competing risks analysis under the generalized FGM copula model ……….14
4.1 Sub-distribution and sub-density functions ………………………………….........14
4.2 Maximum likelihood inference ………………………………………...…………18
Chapter 5 Simulation ……………………………………………………………………….28
5.1 Simulation design ………………………………………….……………………...28
5.2 Simulation results …..………………..………..…………………………………..29
Chapter 6 Data analysis ……………………………………………………………………33
Chapter 7 Concluding remarks .……………...………………………………………........43
Appendix A ……………..….……………….……………………………………………...45
Appendix B ……………..….…….………………………………………………………...52
Appendix C ……………..….…….………………………………………………………...56
Appendix D ……………..…….……………………………………………………………64
References ………………………………………………………………………………….66
參考文獻 Amini M, Jabbari H, Mohtashami Borzadaran GR (2011) Aspects of dependence in generalized Farlie-Gumbel-Morgenstern distributions. Communications in Statistics-Simulation and Computation. 40: 1192-1205.
Amblard C, Girard S (2009) A new extension of bivariate FGM copulas. Metrika. 70: 1-17.
Bakoyannis G, Touloumi G (2012) Practical methods for competing risks data: a review. Statistical Methods in Medical Research. 21: 257-272.
Bairamov I, Kotz S (2002) Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions. Metrika. 56: 55-72.
Basu AP, Ghosh JK (1978) Identifiability of the multinormal and other distributions under competing risks model. Journal of Multivariate Analysis 8: 413-429.
Blest DC (2000) Rank correlation - an alternative measure. Australian and New Zealand Journal of Statistics. 42: 101-111.
Braekers R, Veraverbeke N (2005) A copula-graphic estimator for the conditional survival function under dependent censoring. The Canadian Journal of Statistics. 33: 429-447.
Burr IW (1942) Cumulative frequency functions. The Annals of Mathematical Statistics. 13: 215-232.
Capéraà P, Genest C (1993) Spearman’s rho is larger than Kendall’s tau for positively dependent random variables. Journal of Nonparametric Statistics. 2: 183-194.
Crowder MJ (2001) Classical Competing Risks. Chapman and Hall/CRC, Boca Raton.
De Uña-Álvarez J, Veraverbeke N (2013) Generalized copula-graphic estimator. Test 22: 343-360.
De Uña-Álvarez J, Veraverbeke N (2014) Generalized copula-graphic estimator with left-truncated and right-censored data. Discussion Papers in Statistics and Operations Research. http://jacobo.webs.uvigo.es/presentation_1.pdf
Domma F, Giordano S (2013) A copula-based approach to account for dependence in stress-strength models. Statistical Papers. 54: 807-826.
Domma F, Giordano S (2016) Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family. Journal of Computational and Applied Mathematics. 294: 413-435.
Emura T, Chen YH (2014) Gene selection for survival data under dependent censoring: a copula-based approach. Statistical Methods in Medical Research. DOI: 10.1177/0962280214533378.
Emura T, Nakatochi M, Murotani K, Rondeau V (2015) A joint frailty-copula model between tumor progression and death for meta-analysis. Statistical Methods in Medical Research. DOI: 10.1177/0962280215604510.
Emura T (2016) joint.Cox: Penalized likelihood estimation and dynamic prediction under the joint frailty-copula models between tumour progression and death for meta-analysis. R package version 2.6.
Esary JD, Proschan F, Walkup DW (1967) Association of random variables, with applications. The Annals of Mathematical Statistics. 38: 1466-1474.
Escarela G, Carrière JF (2003) Fitting competing risks with an assumed copula. Statistical Methods in Medical Research. 12: 333-349.
Eyraud H (1936) Les principes de la mesure des corrélations. Ann. Univ. Lyon III Ser. Sect. A. 1: 30-47.
Fan TH, Hsu TM (2015) Statistical inference of a two-component series system with correlated log-normal lifetime distribution under multiple type-I censoring. IEEE Transaction on Reliability. 64: 376-385.
Farlie DJG (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika. 47: 307-323.
Genest C, Plante JF (2003) On Blest’s measure of rank correlation. The Canadian Journal of Statistics. 31: 35-52.
Gini C (1912) Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C. Cuppini, Bologna.
Gumbel EJ (1960) Bivariate exponential distributions. Journal of the American Statistical Association. 55: 698-707.
Hsu TM, Emura T, Fan TH (2016) Reliability inference for a copula-based series system life test under multiple type-I censoring. IEEE Transaction on Reliability. 65: 1069-1080.
Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Computational Statistics. DOI: 10.1007/s00180-015-0564-z.
Knight K (2000) Mathematical statistics. Chapman and Hall, Boca Raton.
Kochar SC, Gupta RP (1987) Competitors of Kendall-tau test for testing independence against positive quadrant dependence. Biometrika. 74: 664-666.
Lawless JF (2003) Statistical Models and Methods for Lifetime Data, (2nd ed.). A John WILEY & SONS, Hoboken, New Jersey.
Lehmann EL (1966) Some concepts of dependence. The Annals of Mathematical Statistics. 37: 1137-1153.
Lehmann EL, Casella G (1998) Theory of point estimation, (2nd ed.). Springer, New York.
Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the Burr distribution. Journal of Applied Statistics. 23: 609-620.
Louzada F, Suzuki AK, Cancho VG (2013) The FGM long-term bivariate survival copula model: modeling, Bayesian estimation, and case influence diagnostics. Communications in Statistics – Theory and Methods. 42: 673-691.
Lo SMS, Wilke RA (2010) A copula model for dependent competing risks. Journal of the Royal Statistical Society: Series C, Applied Statistics. 59: 359-376.
Morgenstern D (1956) Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt für Mathematishe Statistik. 8: 234-235.
Moeschberger ML (1974) Life tests under dependent competing causes of failure. Technometrics. 16: 39-47.
Mendenhall W, Hader RJ (1958) Estimation of parameters of mixed exponential distributed failure time distribution from censored life test data. Biometrika. 45: 504-520.
Nelsen RB (2006) An Introduction to Copulas, (2nd ed.). Springer, New York.
Nešlehová J (2007) On rank correlation measures for non-continuous random variables. Journal of Multivariate Analysis. 98: 544-567.
R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3.2.1.
Schucany WR, Parr WC, Boyer JE (1978) Correlation structure in Farlie-Gumbel-Morgenstern distributions. Biometrika. 65: 650-653.
Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris. 8: 229–231.
Scarsini M (1984) On measures of concordance. Stochastica. 8: 201-218.
Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82: 127-138.
指導教授 江村剛志(Takeshi Emura) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明