博碩士論文 103225009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.233.221.149
姓名 羅雁文(Yen-Wen Lo)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 強震後地震風險之統計分析
(Statistical analysis of the hazard of earthquakes after large earthquakes)
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 強震及其伴隨的大規模餘震經常對人們的財產與生命帶來巨大的威脅,為了提供震後救災的重要資訊,本文進行強震後餘震的即時風險評估。傳統的RJ模式 (Reasenberg and Jones, 1989) 假設餘震發生的時間與其規模是互相獨立的,因應實務所需,Chen等人 (2015) 提出規模與時間相依的修正RJ模式,記作MRJ模式。因為一個大規模餘震可能引發一個新的餘震序列,本文將流病式餘震序列模式 (ETAS; Ogata,1988) 加以簡化得到SETAS模式,或引用Chen等人 (2015) 結果修正之,得到METAS模式。事實上,本文也將空間訊息納入SETAS及METAS模式發展為可以用來描述餘震空間時間及規模風險的模式。為了說明本文模式的應用,本文分析2011年3月11日發生於日本東部海域,芮氏規模9.0的地震,並且探討如何藉由模式進行強餘震的預測。最後,使用接受者操作特徵曲線及尤登指數評估上述餘震預測的效應。
摘要(英) Strong earthquakes and their large offspring usually cause the huge threat to people′s property and lives. To provide information on the rescue work after the strong earthquakes, the immediate assessment of the risk of aftershocks is necessary. The traditional RJ model (Reasenberg and Jones, 1989) assumes that the time and magnitude of aftershocks are independent. For practical purpose, Chen et al. (2015) suggest the modified RJ model, in which the magnitude and time may be dependent. Since a large aftershock may initiate a new seismic sequence, the ETAS (epidemic type aftershock sequence) model (Ogata, 1988) is simplified to obtain the SETAS model. The SETAS model is also modified by using the results in Chen et al. (2015) to have the METAS model. In fact, the spatial information of the previous aftershocks is incorporated into the SETAS and METAS models. Therefore, in this paper, two models one obtained for describing the spatial-temporal-magnitude hazard of aftershocks. The application of the models proposed in this paper is illustrated based on the 5 years aftershocks after the 9.0 earthquake occurred on March 11, 2011, in Tohoku-Oki, Japan. The model-based prediction of future large aftershocks is also discussed. Finally, the efficiency of the prediction is evaluated by using the receiver operating characteristic (ROC) curve and Youden index.
關鍵字(中) ★ 餘震時空規模分布
★ 流病式餘震序列模式
★ 接受者操作特徵曲線
★ 尤登指數
關鍵字(英) ★ Spatial-temporal magnitude distribution
★ ETAS model
★ Receiver operating characteristic (ROC) curve
★ Youden index
論文目次 摘要……………………………………………………………………………………………..i
Abstract……………………………………………………………………………………...…ii
致謝辭………………………………………………………………………………………...iii
Contents……………………………………………………………………………………….iv
Figure contents………………………………………………………………………………..v
Table contents………………………………………………………………………………vi
1. Introduction………………………………………………………………………………….1
2. Literature review…………………………………………………………………………….3
2.1 Time-magnitude distribution…………………………………………………………3
2.2 Space-time-magnitude distribution…………………………………………………6
2.3 Receiver operating characteristic (ROC) curve and Youden index………………9
3. Statistical models…………………………………………………………………………10
3.1 Simplified and modified time-magnitude distribution………………………………10
3.2 Simplified and modified space-time-magnitude distribution……………………….13
4. Data analysis……………………………………………………………………………….19
4.1 Time-magnitude distribution……………………………..……………………19
4.2 Space-time-magnitude distribution……………………………………………20
5. Conclusion and discussion…………...……………………………………………………22
References…………………………………………………………………………………….23
Appendix A…………………………………………………………………………………...25
Appendix B…………………………………………………………………………………...42
參考文獻 Chen, Y. I., Huang, C. S. and Liu, J. Y., 2015. Statistical analysis of earthquakes after the 1999 Mw 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model. Journal of Asian Earth Sciences, 114, 299-304.
Gutenberg, R. and C. F. Richter, 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188.
Ogata, Y., 1983. Estimation of the parameters in the modified Omori formula for aftershock sequences by the maximum likelihood procedure. Journal of Physics of the Earth, 31, 115-124.
Ogata, Y., 1988. Statistical model for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83, 9-27.
Ogata, Y., 1998. Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50, 379-402.
Ogata, Y., and J. Zhuang, 2006. Space-time ETAS models and an improved extension. Tectonophysics, 413, 13-23.
Reasenberg, P. A. and L. M. Jones, 1989. Earthquake hazard after a mainshock in California. Science, 243, 1173-1176.
Reasenberg, P. A. and L. M. Jones, 1994. Earthquake aftershocks:update. Science, 265, 1251- 1252.
Swets, J., 1988. Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
Utsu, T., 1971. Aftershock and earthquake statistic (III): analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of the Faculty of Science, Hokkaido University Series VII. Geophysics, 3, 379-441
Utsu, T., Ogata, Y., Matsu’ura, R.S., 1995. The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 30, 521-605.
Wiemer, S. and M. Wyss, 1997. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research, 102, 15,115-15,128.
Wiemer, S. and K. Katsumata, 1999. Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research, 103, 13, 135-13, 151.
Wiemer, S. and M. Wyss, 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan. Bulletin of the Seismological Society of America, 90, 859-869.
Youden, W. J., 1950. Index for rating diagnostic tests. Cancer, 3, 32-35.
Zhuang, J., Y. Ogata, and D. Vere-Jones, 2002. Stochastic declustering of space-time earthquake occurrences, Journal of the American Statistical Association, 97:458, 369-380.
Zhuang, J., Chang, C. P., Y. Ogata, and Chen, Y. I., 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models. Journal of geophysical research, 110, B05S18, doi:10.1029.
Zhuang, J., 2011. Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space, 63, 207-216.
Zhuang, J., 2012. Predictability study on the aftershock sequence following the 2011 Tohoku-Oki, Japan, earthquake: first results. Geophysical Journal International, doi: 10.1111/j.1365-246X.2012.05626.x.
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明