博碩士論文 103225010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.235.25.169
姓名 鍾孟華(Meng-Hua Chung)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 具有厚尾殘差下 有效地可預測性檢定
(Efficiently predictive test with heavy-tailed innovations)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ On Jump Risk of Liquidation in Limit Order Book
★ 結構型商品之創新、評價與分析★ A Dynamic Rebalancing Strategy for Portfolio Allocation
★ A Multivariate Markov Switching Model for Portfolio Optimization★ 漸進最佳變點偵測在金融科技網路安全之分析
★ Reducing forecasting error under hidden markov model by recurrent neural networks★ Empirical Evidences for Correlated Defaults
★ 金融市場結構轉換次數的偵測★ 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例
★ 在DVEC-GARCH模型下風險值的計算與實證研究★ 資產不對稱性波動參數的誤差估計與探討
★ 公司營運狀況與員工股票選擇權之關係★ 結合買權改進IGARCH模型之參數估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 股票報酬可預測性在金融市場一直是很熱門的議題,而當中Campbell and Yogo (2006) 提出的Bonferroni Q-檢定一直是很常用並且廣用的方法。但在近年有學者Phillips (2014) 提出它並不全然可行,因此在某些情況下,Bonferroni Q-檢定過程中的信賴區間取得必須有不一樣的方法。我們定義一個干擾參數的估計值,並且設立一個界線來區別不同信賴區間使用的時機,藉此完善整個可預測性的Bonferroni Q-檢定。而我們也利用蒙地卡羅來逐步驗證我們綜合性的檢定方法。除此之外,一般的可預測性檢定都具有常態假設,但這並不符合實際金融
資料。我們知道經濟與金融資料普遍具有高持續性以及厚尾的情形,所以我們把重點著重在具有接近單根的情況,並且把常態假設放寬至厚尾假設,甚至變異數不存在來做可預測性檢定,如此一來更符合現實資料的分析。我們也從蒙地卡羅的結果得到,我們綜合性的檢定方法在厚尾假設下可行並且精確。而我們也根據美國金融市場股票報酬的實證得到,Earning-Price Ratio 具有可預測S&P 500指數報酬的性質,另外所有選取的解釋變數皆具有高持續性以及厚尾的特性,由此反觀,相對於以往皆是常態假設,我們的厚尾假設是更符合真實資料的。關鍵詞: 可預測性; Bonferroni 檢定; 單根; 信賴區間; 厚尾
摘要(英) The stock returns predictability is always a popular issue in the financial market, and the Bonferroni Q-test proposed by Campbell and Yogo (2006) has been a common and general method. But in recent years, the researcher in Phillips (2014) proposed that this method is not always valid in some situations. Therefore, we need to use the different way to get the relative confidence intervals which are needed in Bonferroni Q-test procedure. We then define an estimator of the nuisance parameter and set a boundary to distinguish the time when to use the different confidence intervals, and from this, we can complete the whole predictive Bonferroni Q-test. Then we use Monte Carlo to progressively verify our composite testing method. Beyond that, the general predictive tests usually have a normal assumption, this assumption is not satisfied the practical financial data. We all know that economic and financial data have high persistent and heavy tail, so we focus on the case that the data are near unit root. And we relax the normal restriction to a heavy-tailed assumption even infinite variance to do the predictive test so that the analysis is more corresponding to the real data. We also can have the result from Monte Carlo that our composite method is valid and precise under the heavy-tailed assumption. According to the empirical analysis using the U.S. equity
data, we find reliable evidence for predictability of the earnings-price ratio, and the other predictor all have high persistence and heavy-tailed property. From the
empirical results, we can conclude that unlike the normal assumption in the test before, our heavy-tailed assumption in this predictive test is more corresponding to the data.
關鍵字(中) ★ 可預測性
★ Bonferroni 檢定
★ 單根
★ 信賴區間
★ 厚尾
關鍵字(英) ★ Predictability
★ Bonferroni test
★ Unit root
★ Confidence interval
★ Heavy-tailed
論文目次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . i
Abstract. . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . .. . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction . . . . . . . . . . . . . . . . . . 1
2 Methodology . . . . . . . . . . . . . . . . . . 3
2.1 Predictive Regression. . . . . . . . . . . . . 3
2.2 The Q statistic. . . . . . . . . . . . . . . . 4
2.3 Local-to-unity asymptotics. . . . . . . . . . 5
2.4 Bonferroni method. . . . . . . . . . . . . . . 6
2.5 The correction proposed by Phillips (2014) . . 7
2.6 The estimator of the nuisance parameter . . . 9
2.7 Possibly heavy-tailed innovations . . . . . . 10
2.8 Summarize the methodology briefly . . . . . . 11
3 Simulation study . . . . . . . . . . . . . . . .13
3.1 The rejection rates . . . . . . . . . . . . . 13
3.2 The estimator of c . . . . . . . . . . . . . .15
3.3 The rejection rates with different distribution innovations . . 16
3.4 Check the robustness under large |c| . . . . 22
3.5 Summarize the simulation study briefly . . . 22
4 Empirical study . . . . . . . . . . . . . . . . 24
4.1 Description of data . . . . . . . . . . . . . 24
4.2 Persistence of predictor variables . . . . . 25
4.3 Testing the predictability of returns . . . . 26
4.4 Heavy-tailed innovations . . . . . . . . . . 27
5 Conclusion . . . . . . . . . . . . . . . . . . 38
Bibliography . . . . . . . . . . . . . . . . . . 40
參考文獻 Campbell, J. Y. and Yogo, M. (2005). Implementing the econometric methods in‘‘Efficient tests of stock return predictability’’, Unpublished working paper. University of Pennsylvania.
Campbell, J. Y. and Yogo, M. (2006). Efficient tests of stock return predictability, Journal of Financial Economics 81, 27–60.
Cavanagh, C.L. and Elliott, G. and Stock, J.H. (1995). Inference in models with nearly integrated regressors, Econometric Theory 11, 1131–1147.
Fuh, C.D. and Pang, T.X. (2016). Asymptotic properties of the LSE in predictive regressions with possibly heavy-tailed innovations, preprint.
Goyal, A. and Welch, I.(2008). A Comprehensive Look at The Empirical Performance of Equity Premium Prediction, The Review of Financial Studies 21, 1455–1508.
Hjalmarsson, E. (2011). New methods for inference in long-horizon regressions, Journal of Financial and Quantitative Analysis 46, 815–839.
Jansson, M. and Moreira, M. J.(2006). Optimal inference in regression models with nearly integrated regressors, Econometrica 74, 681–714.
Kostakis, A. and Magdalinos, T. and Stamatogiannis, M.P. (2015). Robust Econometric Inference for Stock Return Predictability, Review of Financial Studies 28, 1506–1553.
Lanne, M. (2002). Testing the predictability of stock returns, Review of Economics and Statistics 84, 407–415.
Phillips, P.C.B. (2014). Towards a Unified Asymptotic Theory for Autoregression, Biometrika 74, 535–547.
Phillips, P.C.B. (2014). On confidence intervals for autoregressive roots and predictive regression, Econometrica 82, 1177–1195.
Stambaugh, R.F. (1999). Predictive regressions, Journal of Financial Economics 54, 375–421.
Stock, J.H. (1991). Confidence intervals for the largest autoregressive root in US macroeconomic time series, Journal of Monetary Economics 28, 435–49.
Torous, W. and Valkanov, R. and Yan, S. (2004). On predicting stock returns with nearly integrated explanatory variables, Journal of Business 77, 937–966.
Valkanov, R. (2003). Long-horizon regressions: Theoretical results and applications, Journal of Financial Economics 68, 201–232.
指導教授 傅承德(Cheng-Der Fuh) 審核日期 2016-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明