博碩士論文 103225017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.94.194
姓名 廖昱婷(Yu-Ting Liao)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(A review and comparison of continuity correction rules: the normal approximation to the binomial distribution)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ Likelihood inference on bivariate competing risks models under the Pareto distribution
★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models
★ Copula-based Markov chain model with binomial data★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data
★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在應用統計中,使用二項分配近似常態分配使用連續性校正是非常有用的。首先,論文的第一部分,回顧二項分配和中央極限定理。如果樣本數較大,二項分配會近似於常態分配。連續性校正是為了進一步提高二項分配近似常態分配的準確,其中較廣為人知的連續性較正為Yates’s correction for continuity (Yates, 1934; Cox, 1970)。此外我們還介紹比較少人知道的Cressie’s finely tuned continuity correction (Cressie, 1978)。我們將連續性較正應用在統計製程的問題中。此外,我們進行數值模擬研究,比較Yates’s correction for continuity跟Cressie’s finely tuned continuity correction。
摘要(英) In applied statistics, the continuity correction is useful when the binomial distribution is approximated by the normal distribution. In the first part of this thesis, we review the binomial distribution and the central limit theorem. If the sample size gets larger, the binomial distribution approaches to the normal distribution. The continuity correction is an adjustment that is made to further improve the normal approximation, also known as Yates’s correction for continuity (Yates, 1934; Cox, 1970). We also introduce Cressie’s finely tuned continuity correction (Cressie, 1978), which are less known for statisticians. We discuss the application of these continuity corrections to the problem of statistical process control and confidence limit. In addition, we perform numerical studies to compare these corrections.
關鍵字(中) ★ 二項分配
★ 信賴界線
★ 連續性校正
★ 控制圖
★ 常態近似
★ 統計製程管制
關鍵字(英) ★ Binomial distribution
★ Confidence limit
★ Continuity correction
★ Control chart
★ Normal approximation
★ Statistical process control
論文目次 1 Introduction ……………………………………………………………………...1
2 Normal approximation to binomial…………………………………………...…3
3 Application to statistical process control………………………………………9
4 Application to confidence limit………………………………………………………14
5 Numerical studies…………………………………………………………….24
6 Conclusion……………………………………………………………………………….33
Appendix A………………………….......…………………………………………………34
Appendix B………………………………………………………………………………...36
Appendix C………………………………………………………………………………..37
References…………………………………………………………………………………38
參考文獻 Abramowitz M, Stegun IA (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover, New York.
Blyth CR, Still HA (1983). Binomial confidence intervals. Journal of the American Statistical Association 81:108-116.
Burr IW (1979). Elementary Statistical Quality Control, 1rd ed. Marcel Dekker, Inc. , New York.
Burden RL, Faires JD (2011). Numerical Analysis, 9rd ed. Brooks/Cole. Boston.
Casella G, Berger RL (2002). Statistical Inference, 2rd ed. Duxbury Press, Australia.
Chen W (2008). Introduction to Complex Analysis, Macquarie University. https://rutherglen.science.mq.edu.au/wchen/lnicafolder/lnica.html.
Cox DR (1970). The continuity correction. Biometrika 57: 217-219.
Cressie N (1978). A finely tuned continuity correction, Ann. Inst. Statist. Math 30: 435-442.
Duran RI, Albin SL (2009). Monitoring a fraction with easy and reliable settings of the false alarm rate. Quality and Reliability Engineering International, 25(8): 1029–1043.
Emura T, Ho YT (2016), A decision theoretic approach to change point estimation for binomial CUSUM control charts, Sequential Analysis 35 (No.2): 238-253.
Emura T, Lin YS (2015). A comparison of normal approximation rules for attribute control charts. Quality and Reliability Engineering International 31 (No.3): 411–418.
Feller W (1968). An Introduction to Probability Theory and Its Applications, volume I, 3rd ed. John Wiley & Sons, Inc. New York.
Fuh CD, Kou S, Luo SF, Wong HC (2015). On Continuity Correction for First-Passage Times in Double Exponential Jump Diffusion Models 2nd GOSS Private Equity & Ninth RMI Annual Risk Management Joint Conference, 30 & 31 July 30-31, Regis Hotel Singapore.
Haber M (1982). The continuity correction and statistical testing, International Statistical Review 50: 135-144.
Hansen P (2011). Approximating the binomial distribution by the normal distribution - error and accuracy, U.U.D.M. Project Report 2011:18.
Makri FS, Psillakis ZM. (2011). On runs of length exceeding a threshold: normal approximation. Statistical Papers, 52(3), 531-551.
Montgomery DC (2009). Statistical Quality Control: A Modern Introduction, 6rd ed. John Wiley & Sons, New York.
Pradhan V, Evans JC, Banerjee T (2013). Binomial confidence intervals for testing non-inferiority or superiority: a practitioner’s dilemma. Statistical Methods in Medical Research, 0962280213498324
Schader M, Schmld F (1990). Charting small sample characteristics of asymptotic confidence intervals for the binomial parameter p. Statistical Papers, 31: 251-264.
Shewhart WA (1931). Economic Control of Quality of Manufactured, Journal of the American Statistical Association 27 (No. 178), 215-217.
Yates F (1934). Contingency tables involving small numbers, and the χ2 test, Journal of the Royal Statistical Society 1(2), 217–235.
指導教授 江村剛志(Takeshi Emura) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明