博碩士論文 103226007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.216.19.68
姓名 林昭宇(Chao-Yu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電子迴旋共振化學氣相沉積法調變矽基鍺薄膜應力之研究
(Strain-Controlled Germanium Thin Films Grown by Electron Cyclotron Resonance-Chemical Vapor Deposition)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在低溫 (220℃) 的製程環境中,利用電子迴旋共振化學氣相沉積法調變壓縮及拉伸應變於矽基磊晶鍺薄膜。由於光電元件整合在互補式金屬氧化物半導體 (CMOS) 上無法在超過400℃ 的環境下製程,故本研究採用低溫製程,以利於整合元件。除了上述優點之外,本研究方法藉由調整矽基鍺薄膜之應變,進而改變其能隙,研究結果顯示含有拉伸應變的矽基鍺薄膜,其吸收截止波段在1500 nm到1600 nm之間較塊材鍺有更高的吸收係數。

本研究藉由調整製程參數以製備壓縮及拉伸應變鍺薄膜,參數包括工作壓力、主磁場電流及GeH4流速,並利用X光繞射儀、原子力顯微鏡、蝕刻缺陷密度量測法、近紅外光光譜儀等等,探討其薄膜特性及近紅外光波段吸收係數變化。研究結果顯示利用電子迴旋共振化學氣相沉積法可得拉伸應變含量最高為0.17% 的矽基鍺薄膜,其X光繞射半高寬可達646 arcsec,表面粗糙度方均根值為4.9 nm,差排缺陷密度約106 #/cm2。為了進一步提升拉伸應變及改善薄膜磊晶品質,將鍺薄膜進行後退火處理,發現其拉伸應變可提升至0.25%,半高寬降低為 456 arcsec。此外本實驗利用光譜儀量測近紅外光波段壓縮及拉伸應變兩種薄膜的吸收係數,拉伸應變鍺薄膜相較於壓縮應變鍺薄膜在吸收光波長1550 nm時,吸收截止波段紅位移平均可達120 nm,並將此製作成P-I-N結構,量測低負偏壓下吸收係數變化 (Δα/α),其隨著負偏壓上升而增加,Δα/α在負偏壓0至3V為1.3。
摘要(英) We use Electron Cyclotron Resonance-Chemical Vapor Deposition (ECR-CVD) to grow compressive and tensile strained Germanium (Ge) thin films on Silicon (Si) substrate under the low temperature of 220℃ in this research. The fabrication of device on Complementary Metal-Oxide-Semiconductor (CMOS) is only for low temperature less than 400℃, so ECR-CVD is a suitable method to integrate with devices. On the other hand, we can deposit strain-controlled Ge thin films on Si substrate by ECR-CVD. We can use the method to adjust the value of the band gap of Ge. This research indicates that there is a higher absorption coefficient between the wavelength of 1500 nm to 1600 nm compared with bulk Ge.

In this research, we change the parameters of the system of ECR-CVD including working pressure, mail coil current and the flow of GeH4. We measure the thin films by XRD, AFM, EPD , UV spectrophotometer and so on. We analyze the red shift of wavelength and the properties of the Ge thin films on Si. The research indicates the tensile stress of Ge thin films are up to 0.17%. The FWHM is 646 arcsec. The roughness is 4.9 nm and the threading dislocation density is about 106 #/cm2. In order to increase the tensile strain, we post anneal this Ge thin film. The tensile strain enhance to 0.25%. The FWHM become 456 arcsec. We also measure the Ge thin films by UV spectrophotometer. There is a 120 nm red wavelength shift of absorption coefficient in 1550 nm compared with compressive strained Ge. Then we fabricate the P-I-N structure with this Ge thin film. Under reverse bias 0V to 3V, we measure the value 1.3 of variety of absorption coefficient.
關鍵字(中) ★ 電子迴旋共振化學氣相沉積
★ 矽基鍺薄膜
★ 應力
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章、緒論 1
1-1前言 1
1-2研究動機 2
1-3研究目的與論文架構 3
第二章、文獻回顧與基本原理 4
2-1薄膜沉積原理 5
2-2鍺薄膜沉積機制 7
2-3磊晶鍺成長技術 9
2-4鍺薄膜應力 12
2-5法蘭茲 - 卡爾迪西效應 (Franz–Keldysh Effect) 18
第三章、實驗步驟、設備及分析儀器 21
3-1實驗步驟 21
3-1-1以電子迴旋共振化學氣相沉積鍺薄膜 21
3-1-2製作P-I-N結構流程 22
3-2實驗設備 23
3-2-1 電子迴旋共振化學氣相沉積機台 (ECR-CVD) 23
3-2-2快速熱退火爐 (Arts-RTA) 25
3-2-3離子濺鍍機 (Sputter) 25
3-2-4光罩對準曝光機 (Quintel) 26
3-2-5反應離子蝕刻機 (RIE) 27
3-2-6電子槍蒸鍍系統 (E-gun) 27
3-3分析儀器 28
3-3-1高解析度X光繞射儀 (HRXRD) 28
3-3-2蝕刻孔洞密度缺陷 (EPD) 29
3-3-3穿透式電子顯微鏡 (TEM) 30
3-3-4功率計 (Power meter) 30
3-3-5掃描式電子顯微鏡 (SEM) 31
3-3-6拉曼光譜儀 (Raman) 32
3-3-7原子力顯微鏡 (AFM) 32
3-3-8紫外光- 可見光 – 近紅外光光譜儀 (UV) 33
第四章、結果與討論 36
4-1矽基鍺薄膜特性探討 36
4-1-1改變工作壓力影響 36
4-1-2改變主磁場電流 40
4-1-3改變GeH₄流速影響 46
4-1-4 X光繞射儀及拉曼光譜儀驗證薄膜應力 50
4-1-5調變參數沉積壓縮及拉伸應力鍺薄膜 51
4-1-6蝕刻孔洞密度缺陷 (EPD) 分析 53
4-1-7紫外光 - 可見光 - 近紅外光光譜儀 (UV) 分析 54
4-2量測矽基鍺薄膜法蘭茲 - 卡爾迪西效應 58
4-2-1快速熱退火實驗 59
4-2-2穿透式電子顯微鏡 (TEM) 及掃描式電子顯微鏡 (SEM) 分析 62
4-2-3 負偏壓下吸收係數變化討論 64
4-2-4鍺薄膜分析總整理 67
4-2-5鍺薄膜吸收係數分析總整理 68
第五章、結論與未來展望 69
5-1矽基鍺薄膜 69
5-2法蘭茲 - 卡爾迪西效應下的矽基鍺薄膜 70
5-3未來展望 71
參考文獻 73
參考文獻 1. http://www.weidrupal.com/node/166
2. http://technews.tw/2016/03/28/about-moores-law/
3. http://www.hightech.tw/index.php/2012-06-06-14-12-38/19-mems-nanotechnology/432-nano-materials-character
4. https://zh.wikipedia.org/wiki/光纖通訊
5. Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films 518, 83-87 (2010).
6. E. M. Conwell, “Properties of Silicon and Germanium: II,” Proceedings of the IRE 46, 1281-1298 (1958).
7. 侯裕瑋, “低溫製備磊晶鍺薄膜及矽基鍺光偵測器,” 國立中央大學光電科學與工程學系碩士論文, 1 (2014).
8. M. Bosi and G. Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials 56, 146-174 (2010).
9. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi and C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectronic Engineering 88, 526-529 (2011).
10. A. F. Abd Rahim, M. R. Hashim, N. K. Ali, A. M. Hashim, M. Rusop and M. H. Abdullah, "The evolution of Si-capped Ge islands on Si (100) by RF magnetron sputtering and rapid thermal processing: The role of annealing times," Microelectronic Engineering 126, 134-142 (2014).
11. Y. H., J. H. Yang, S. Kang, D. J. Kim, T. S. Jeong, C. J. Choi, T. S. Kim and K. H. Shim, "Growth of a Ge layer on 8 in. Si (100) substrates by rapid thermal chemical vapor deposition," Materials Science in Semiconductor Processing 21, 58-65 (2014).
12. Z. Zhoua, C. Lia, H. Laia, S. Chena and J. Yub, "The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(1 0 0) by ultrahigh vacuum chemical vapor deposition," Journal of Crystal Growth 310, 2508-2513 (2008).
13. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, “High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate,” Solid-State Electronics 62, 189–194 (2011).
14. Y. Yamamoto, P. Zaumseil, T. Arguirov, M. Kittler and B. Tillack, "Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD," Solid-State Electronics 60, 2-6 (2011).
15. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD," Applied Surface Science 299, 1-5 (2014).
16. J. Liu, R. C. Aguilera, J. T. Bessette, X. Sun, Xiaoxin Wang, Yan Cai, Lionel C. Kimerling and Jurgen Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354-3360 (2012).
17. X. Wang, H. Li, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, J. Michel, and J. Liu, “Infrared absorption of n-type tensile-strained Ge-on-Si,” Optics Letters 38, 652-654 (2013).
18. R. Kuroyanagi, L. M. Nguyen, T. Tsuchizawa, Y. Ishikawa, K. Yamada, and K. Wada, “Local bandgap control of germanium by silicon nitride stressor,” Optics Express 21, 18553-18557 (2013).
19. K. Oda, K. Tani, S.I. Saito, and T. Ido, ”Improvement of crystallinity by post-annealing and regrowth of Ge layers on Si substrates,” Thin Solid Films 550, 509-514 (2013).
20. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p - i - n photodetectors on Si platform for C and L band telecommunications,” Applied Physics Letters 87, 011110 (2005).
21. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi, and C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectronic Engineering 88, 526-529 (2011).
22. Y. Ishikawa, and K. Wada, "Germanium for silicon photonics," Thin Solid Films 518, S83-S87 (2010).
23. 莊達人,VLSI製造技術,高立圖書有限公司,民國85 年。
24. J. H. Park and T. S. Sudarshan, “Chemical Vapor Deposition,” Surface Engineering Series 2 (2001).
25. J. Venables, G.D.T. Spiller, and M. Hanbucken, “Nucleation and Growth of Thin films,” Reports on Progress in Physics 47, 399-459 (1984).
26. A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells 78, 3-26 (2003).
27. M. Bosi, and G. Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials 56, 146-174 (2010).
28. Y. Bogumilowicz, J.M. Hartmann, C. D. Nardo, P. Holliger, A. M. Papon, G. Rolland, and T. Billon, "High-temperature growth of very high germanium content SiGe virtual substrates," Journal of Crystal Growth 290, 523-531 (2006).
29. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of highquality Ge epilayer on Si (1 0 0) by RPCVD," Applied Surface Science 299, 1-5 (2014).
30. J. Mantey, W. Hsu, J. James, E. U. Onyegam, S. Guchhait ,and S. K. Banerjee, "Ultra-smooth epitaxial Ge grown on Si (001) utilizing a thin C-doped Ge buffer layer," Applied Physic Letters 102, 192111 (2013).
31. D. Leonhardt, S. Ghosh, and S. M. Han, "Defects in Ge epitaxy in trench patterned SiO2 on Si and Ge substrates," Journal of Crystal Growth 335, 62-65 (2011).
32. 汪建民, “材料分析 Materials Analysis,” 中國材料科學協會 材料科學叢書2 (1998).
33. J. A. Thornton, and D. W. Hoffman, “Stress-Related Effects in Thin Films,” Thin Solid Films 171, 5-31 (1989).
34. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, and S. Liua, “Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD,” Applied Surface Science 299, 1-5 (2014).
35. Y. Ishikawa, K. Wada, D.D. Cannon, J.F. Liu, H.C. Luan, and L.C. Kimerling, Applied Physics Letters 82, 2044 (2003).
36. J.M. Hartmann, A.M. Papon, V. Destefanis, T. Billon, and J. Cryst, Growth 310, 5287 (2008).
37. https://zh.wikipedia.org/wiki/法蘭茲 - 卡爾迪西效應
38. T. H. Chang, C. Chang, Y. H. Chu, C. C. Lee, J.Y. Chang, I. C. Chen, and T. T. Li, “Low Temperature (180℃) Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition,” International Journal of Photoenergy 2014 (2014).
39. J. Villain, "Physics of Crystal Growth," Campridge Univ Press (1998).
40. 葉哲宏, “利用ECRCVD於低溫成長磊晶矽薄膜之製程參數與腔體環境研究”, 國立中央大學機械工程學系論文 (2015).
41. 謝泓火奇, “低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究”, 國立中央大學材料科學系論文 (2015).
42. J.M. Hartmann, et al., Journal of Crystal Growth 312, 532-541 (2010).
指導教授 張正陽、陳彥宏(Jeng-yang Chang Yen-Hung Chen) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明