博碩士論文 103226017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.146.65.212
姓名 謝華軒(Hua-Shiuan Shie)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
(Nanostructural Growth and Implications for Electrical Characterization of α,ω-diperfluorohexylquaterthiophene Thin Film Transistors)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究N型有機小分子材料(DFH-4T)成長在介電層(PMMA)的有機薄膜電晶體,並探討在不同薄膜厚度下的表面形貌及晶體結構變化對電晶體的電性表現之影響。由觀察電晶體電性表現結果,發現當DFH-4T膜厚由數奈米增加至數十奈米,載子遷移率會提升近兩個數量級,其中當薄膜成長至一特定厚度(約20 奈米)以上,電子遷移率便開始出現飽和的現象。進一步由AFM與XRD分析發現,DFH-4T薄膜厚度由數奈米至數十奈米會形成截然不同的表面形貌,但晶體結構並無明顯的差異,因此推論靠近介電層之表面形貌為主導電晶體電性之因素。為了進一步了解DFH-4T表面形貌對電晶體電性影響的微觀機制,本論文也進行低溫量測實驗,並利用mobility edge model理論分析薄膜的電子能態密度,建立不同表面形貌對電子缺陷態分佈的關聯性。本論文提供了完整的DFH-4T導電機制的研究,期望未來可利用此材料特性設計出更多元的有機元件。
摘要(英) In this thesis, the organic thin film transistors were fabricated with the N-type organic semiconductor (DFH-4T) deposited on the PMMA dielectric, and the effects of film morphology and microstructure of various thickness on the performance of transistors were investigated. From the results of transistor characteristics, we found that the electron mobility increases by two order of magnitude as the film thickness increases from few nanometers to few tenth of nanometers, but the mobility starts to saturate when the film is thicker than 20 nm. Further investigations from AFM and XRD analyses showed that as the thickness increases from few nanometers to few tenth of nanometers shows different surface morphology, but similar crystalline structure. Therefore, we speculate that the surface morphology close to the PMMA dielectric is the key factor for transistor performance. To further understand the microscopic mechanisms of DFH-4T surface morphology that affecting the transistor characteristics. We performed the low-temperature measurement and analyzed with mobility edge model, and we established the relationship between morphology and distribution of trap state. This thesis provides the comprehensive DFH-4T transport mechanism, which could applied to design other the organic device in the future.
關鍵字(中) ★ 有機電晶體
★ N型有機半導體
關鍵字(英) ★ organic transistor
★ N-type semiconductor
論文目次 目錄
摘要 ............................................................................................. V
Abstract .....................................................................................VI
致謝 .......................................................................................... VII
目錄 ........................................................................................ VIII
圖目錄 ........................................................................................XI
表目錄 ..................................................................................... XVI
第一章 緒論 ................................................................................ 1
1-1 前言 ................................................................................................. 1
1-2 具發展淺力的N型有機半導體分子(DFH-4T) ........................... 3
1-3有機半導體層與介電層及電極之介面關係 .................................. 6
1-4 研究目的與動機 ............................................................................. 7
第二章 基礎原理 ....................................................................... 9
2-1 有機場效電晶體簡介 ..................................................................... 9
2-2 有機場效電晶體基本架構 ........................................................... 10
IX
2-3 有機場效電晶體之工作原理 ....................................................... 12
2-4 有機薄膜場效電晶體之電流及電壓關係 ................................... 15
2-5 Mobility edge model (ME model) .................................................. 18
2-6 Mobility edge model之重要參數 ................................................. 21
第三章 實驗部分 ..................................................................... 25
3-1 材料介紹 ....................................................................................... 26
3-2實驗儀器設備 ................................................................................ 28
3-3 量測儀器 ....................................................................................... 32
3-4 實驗製程步驟 ............................................................................... 43
第四章 實驗結果與討論 ......................................................... 46
4-1 DFH-4T薄膜厚度對電性表現、晶體結構及表面形貌之影響 . 47
4-1-1 DFH-4T薄膜厚度對電晶體表現之影響 .......................... 48
4-1-2 不同薄膜厚度的DFH-4T之表面形貌與晶體結構 ....... 49
4-1-3 DFH-4T薄膜的近緣X光吸收細微結構光譜 ................. 55
4-1-4 綜合討論 ............................................................................ 57
4-2 DFH-4T薄膜電晶體在低溫電性表現與ME model理論分析 60
4-2-1 DFH-4T薄膜電晶體在低溫電性表現 .............................. 60
X
4-2-2 活化能(activation energy)計算 ......................................... 62
4-2-3 ME model fitting結果 ........................................................ 64
4-2-4 綜合討論 ............................................................................ 66
第五章 結論 .............................................................................. 68
參考文獻 .................................................................................... 70
參考文獻 參考文獻
[1] S.E.T.S. Parthasarathy, Mater. Today, 9 (2006).
[2] X.-Z.P. Gilles Horowitz, ; Denis Fichou,; Francis Garnier Synthetic Metals, 51 (1992) 419-424.
[3] T.B. Singh, N. Marjanovi?, G.J. Matt, S. Gunes, N.S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwodiauer, S. Bauer, Organic Electronics, 6 (2005) 105-110.
[4] M.Y. K. Kudo, ; T. Moriizumi, Jpn. J. Appl.Phys, 23, 130 (1984).
[5] R. Scholz, D. Lehmann, A.D. Muller, F. Muller, D.R.T. Zahn, physica status solidi (a), 205 (2008) 591-599.
[6] R.P. Ortiz, H. Brisset, C. Videlot-Ackermann, Synthetic Metals, 162 (2012) 857-861.
[7] W.D. Gill, J. Appl. Phys, 43, 5033 (1972).
[8] U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, H. Klauk, Adv Mater, 22 (2010) 982-985.
[9] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat Mater, 9 (2010) 1015-1022.
[10] M.M. A. Facchetti, H.E. Katz, T.J. Marks, Adv. Mater, 15, No. 1, January 3 (2003).
[11] M.M. Geetha R Dholakia, Antonio Facchetti, Tobin J. Marks, Nano Lett, Vol. 6, No. 11 (2006).
[12] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nat Mater, 9 (2010) 496-503.
[13] W. Gu, W. Jin, B. Wei, J. Zhang, J. Wang, Applied Physics Letters, 97 (2010) 243303.
[14] T. Maeda, H. Kato, H. Kawakami, Applied Physics Letters, 89 (2006) 123508.
[15] J. Youn, G.R. Dholakia, H. Huang, J.W. Hennek, A. Facchetti, T.J. Marks, Advanced Functional Materials, 22 (2012) 1856-1869.
[16] K. Xiao, Y. Liu, G. Yu, D. Zhu, Applied Physics A: Materials Science & Processing, 77 (2003) 367-370.
[17] M. Della Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, R. Alcubilla, Journal of Physics D: Applied Physics, 42 (2009) 145102.
[18] J.-F. Chang, W.-R. Chen, S.-M. Huang, Y.-C. Lai, X.-Y. Lai, Y.-W. Yang, C.-H. Wang, Organic Electronics, 27 (2015) 84-91.
[19] N. Yoshimoto, H. Brisset, J. Ackermann, C. Videlot-Ackermann, Open Journal of Applied Sciences, 02 (2012) 283-293.
[20] S.R.P. Marcia M. Payne, John E. Anthony, Chung Chen Kuo, Thomas N. Jackson, J. AM. CHEM. SOC, 127, 4986-4987 (2005).
[21] J. Smith, R. Hamilton, Y. Qi, A. Kahn, D.D.C. Bradley, M. Heeney, I. McCulloch, T.D. Anthopoulos, Advanced Functional Materials, 20 (2010) 2330-2337.
[22] J.W. Shi, H.B. Wang, D. Song, H.K. Tian, Y.H. Geng, D.H. Yan, Advanced Functional Materials, 17 (2007) 397-400.
[23] C.A. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys Chem Chem Phys, 10 (2008) 2302-2307.
[24] F.-C. Chen, C.-H. Liao, Applied Physics Letters, 93 (2008) 103310.
[25] Y.L. CHONG AN DI, GUI YU, DAOBEN ZHU, ACCOUNTS OF CHEMICAL RESEARCH, Vol. 42 (2009) No. 10.
[26] D. Kumaki, M. Yahiro, Y. Inoue, S. Tokito, Applied Physics Letters, 90 (2007) 133511.
[27] C.A. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, Y. Wen, Y. Wang, W. Wu, D. Zhu, Phys Chem Chem Phys, 11 (2009) 7268-7273.
[28] B.L. M. A. McCarthy, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, SCIENCE, 332 (2011) 570-573.
[29] M.A. McCarthy, B. Liu, A.G. Rinzler, Nano Lett, 10 (2010) 3467-3472.
[30] K.F. Seidel, L. Rossi, R.M.Q. Mello, I.A. Hummelgen, Journal of Materials Science: Materials in Electronics, 24 (2012) 1052-1056.
[31] F. So, C. Adachi, K. Jokinen, A. Bykov, T. Fabritius, R. Myllyla, 9183 (2014) 91831Q.
[32] J. Peng, Q. Sun, S. Wang, H.-Q. Wang, W. Ma, Applied Physics Letters, 103 (2013) 061603.
[33] Y.R. Su, W.G. Xie, Y. Li, Y. Shi, N. Zhao, J.B. Xu, Journal of Physics D: Applied Physics, 46 (2013) 095105.
[34] M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Applied Physics Letters, 81 (2002) 268.
[35] K.C. Yoon MH, Facchetti A, Marks TJ., J Am Chem Soc, 128(39) (2006) 12851-12869.
[36] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Applied Physics Letters, 84 (2004) 3789.
[37] M. McDowell, I.G. Hill, J.E. McDermott, S.L. Bernasek, J. Schwartz, Applied Physics Letters, 88 (2006) 073505.
[38] Y. Jang, J.H. Cho, D.H. Kim, Y.D. Park, M. Hwang, K. Cho, Applied Physics Letters, 90 (2007) 132104.
[39] M. Waqas Alam, Z. Wang, S. Naka, H. Okada, Applied Physics Letters, 102 (2013) 061105.
[40] J.-Z.W. Cheng-Yu Lu, Hong-Yu Su, Dian Luo, Yun-Lan Chen, Chih-Hao Chang, Hsin-Hua Chang, OPTIC, (2015).
[41] X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Advanced Functional Materials, 19 (2009) 2407-2415.
[42] A.H. Bert de Boer, M. Magdalena Mandoc, Teunis van Woudenbergh, Paul W. M. Blom, Adv. Mater, 5 (2005) 621-625.
[43] H.S. Jana Zaumseil, Chem. Rev, 107 (2007) 1296-1323.
[44] C.D.F. Christopher R. Newman, Demetrio A. da Silva Filho, Jean-Luc Bre’das, Paul C. Ewbank, Kent R. Mann, Chem. Mater, 16 (2004) 4436-4451.
[45] A. Salleo, T.W. Chen, A.R. Volkel, Y. Wu, P. Liu, B.S. Ong, R.A. Street, Physical Review B, 70 (2004).

指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2017-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明