博碩士論文 103226025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.9.7
姓名 高維笛(Wei-Di Kao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光激發有機極化子元件之模擬與分析
(Simulation and analysis of the optically pumped organic polariton device)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究由金屬-介電質反射鏡組成的有機微共振腔內激子與光子強耦合的現象,建立理論模型分析光激發極化子能態的能量色散與光強分布。此理論模型之建立乃根據Lidzey團隊的研究基礎,其中極化子分布主要由下列幾項因素決定,包括(1)有機分子的光吸收或者分子振動,(2)玻色-愛因斯坦分布機率(Bose-Einstein distribution),(3)激子庫(exciton reservoir)的激發,和(4)極化子往下支最低能態散射的散射效率。首先本論文藉由模擬Lidzey團隊的極化子元件下支能態之螢光強度分布,得到與Lidzey團隊文獻[1]一致結果,成功驗證所使用的極化子模型的正確性。接著將此模型應用於本實驗室實際製作之不同腔長的DEDOC強耦合共振腔元件,模擬極化子光強分布,發現與量測結果有相似的趨勢,其結果顯示極化子往下支最低能態散射的瓶頸效應(bottleneck effect)為極化子發光之主要損耗機制,而在實作上可透過製作detuning 為正值的極化子元件來降低瓶頸效應,提高散射至最低能態的效率進而增加最低能態極化子的數量與發光強度。
摘要(英) In this study, we investigated the photon and exciton strong coupling phenomenon in the metal-dielectric mirror organic microcavity, and established the model to analyze the dispersion relation and PL intensity distribution of polariton states. This model based on Lidzey’s research, the polariton population is determined by following some factors: the absorption or emission of a molecular vibration, Bose-Einstein distribution, radiative pumping of polariton states, and the polariton scattering ef?ciency into the bottom of lower polariton branch(LPB). We proved the model correctness by simulating the intensity distribution from the Lidzey’s group. Next, polariton devices which the material of exciton is DEDOC cyanine dye was analyzed by the model. The LPB PL intensity distribution of simulation approximate experiment results. From the simulation results, the bottleneck effect is majority mechanism decreasing the PL intensity. In experiment, we can manufacture the positive detuning polariton device to decrease the bottleneck effect and raise the polariton scattering efficiency into lowest LPB state to enhance polariton population and the PL intensity.
關鍵字(中) ★ 極化子
★ 微共振腔
★ 強耦合
關鍵字(英) ★ polariton
★ mirocavity
★ strong coupling
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 有機激子與光子強耦合研究發展 6
1-3 研究動機 9
第二章 原理與理論分析 10
2-1 微共振腔的薄膜理論 10
2-1-1 多層膜的穿透與反射 10
2-1-2 斜向入射的修正 12
2-1-3 非相干性的穿透與反射 13
2-1-4 電場分布 14
2-2 微共振腔內的強耦合共振模態 15
2-2-1 微共振腔的色散關係 15
2-2-2 微共振腔內的強耦合作用 17
2-3 有機強耦合的材料 22
2-4 光激發有機極化子元件螢光強度分布 24
第三章 實驗方法 26
3-1 有機極化子元件的製程 26
3-1-1 有機染料分子高吸收薄膜的製程及特性 26
3-1-2 有機微共振腔的製程與設計 30
3-2 微共振腔的光學量測 33
3-2-1 紫外光/可見光光譜儀 33
3-2-2 可變角度積分球光譜儀 34
3-2-3 光致發光量測系統 35
第四章 有機微共振腔的模擬 36
4-1 有機極化子元件模擬理論 36
4-1-1 理論模型(The dynamic model) 36
4-1-2 極化子的瓶頸效應(polariton bottleneck effect) 42
4-1-3 不同能態下的極化子元件特性模擬結果與分析 45
4-1-4 不同溫度下極化子螢光強度分布的分析 51
4-2 DEDOC有機極化子元件的模擬與分析 54
4-2-1 不同有機極化子元件的色散關係 54
4-2-2 不同有機極化子元件的模擬結果與分析 56
第五章 結論與未來展望 63
參考文獻 66
參考文獻 1. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, "Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities," Advanced Functional Materials 21, 3691-3696 (2011).
2. A. Besier, Concepts of modern physics (McGraw-Hill Education, New York, 2003).
3. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proc Natl Acad Sci U S A 100, 15318-15323 (2003).
4. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaitre, and J. Bloch, "Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities," Phys Rev Lett 100, 047401 (2008).
5. M. Slootsky, Y. Zhang, and S. R. Forrest, "Temperature dependence of polariton lasing in a crystalline anthracene microcavity," Physical Review B 86 (2012).
6. D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, "Polariton light-emitting diode in a GaAs-based microcavity," Physical Review B 77 (2008).
7. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys Rev Lett 69, 3314-3317 (1992).
8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang le, "Bose-Einstein condensation of exciton polaritons," Nature 443, 409-414 (2006).
9. V. Timofeev, and D. Sanvitto, Exciton Polaritons in Microcavities New Frontiers ( Springer, 2012).
10. D. Bajoni, "Polariton lasers. Hybrid light–matter lasers without inversion," Journal of Physics D: Applied Physics 45, 409501 (2012).
11. K. S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, "All-dielectric GaN microcavity: Strong coupling and lasing at room temperature," Applied Physics Letters 102, 101113 (2013).
12. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity " Nature 395, 53-55 (1998).
13. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical Review Letters 82, 3316-3319 (1999).
14. 李正中, "薄膜光學與鍍膜技術," 第七版,藝軒圖書出版社,新北市 (2012).
15. M. S. Bradley, and V. Bulovi?, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B 82 (2010).
16. C. F. Klingshirn, Semiconductor Optics (2012).
17. H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton Bose-Einstein condensation," Reviews of Modern Physics 82, 1489-1537 (2010).
18. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, "Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation," Physical Review B 65 (2002).
19. J. J. Hopfield, "Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals," Physical Review 112, 1555-1567 (1958).
20. E. E. Jelley, "Sectral absorption and fluorescence of dyes in the molecular state," Nature 138, 1009-1010 (1936).
21. E. E. Jelley, "Molecular, Nematic and Crystal States of I:I-Dietjyl-Cyanine Chloride " Nature 139, 631-632 (1937).
22. F. Wurthner, T. E. Kaiser, and C. R. Saha?Moller, "J?Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials," Angewandte Chemie International Edition 50, 3376-3410 (2011).
23. R.K.Iler, "Multilayers of colloidal particles," Journal of Colloid and Interface Science 21, 569-594 (1966).
24. X. Zhang, H. Chen, and H. Zhang, "Layer-by-layer assembly: from conventional to unconventional methods," Chem Commun (Camb), 1395-1405 (2007).
25. M. S. Bradley, J. R. Tischler, and V. Bulovic, "Layer-by-Layer J-Aggregate Thin Films with a Peak Absorption Constant of 106 cm-1," Advanced Materials 17, 1881-1886 (2005).
26. T. Tani, M. Saeki, Y. Yamaguchi, T. Hayashi, and M. Oda, "Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films," Journal of Luminescence 107, 339-346 (2004).
27. S.-H. Chen, C.-H. Wang, Y.-W. Yeh, C.-C. Lee, S.-L. Ku, and C.-C. Huang, "Polarization filters with an autocloned symmetric structure," Applied optics 50, C368-C372 (2011).
28. 何彥璋, "強耦合有機微共振腔之設計與研究," 碩士,光電科學與工程學系,國立中央大學,桃園市 (2015).
29. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, "Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity," Nat Mater 13, 712-719 (2014).
30. P. Michetti, and G. C. La Rocca, "Simulation of j-aggregate microcavity photoluminescence. ," Phys. Rev. B 77, 195301. (2008).
31. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, "Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity," Physical Review B 84 (2011).
32. Organic and Hybrid Photonic Crystals (Springer, 2015).
33. D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B 88 (2013).
34. G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulovic, "Lasing through a strongly-coupled mode by intra-cavity pumping," Opt Express 21, 12122-12128 (2013).

指導教授 李正中、張瑞芬(Cheng-Chung?Lee Jui-Fen Chang) 審核日期 2017-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明