博碩士論文 103226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.218.38.125
姓名 陳可邦(Chen Ko-Pang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究
(Studies of the electro-optical properties of mesoporous-doped liquid crystals and their applications)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究
★ 離子性材料對向列型液晶自發性配向及其應用之研究★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究
★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器★ 低操作電壓高分子分散型液晶及其應用之研究
★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡
★ 光控及電控散射型/吸收型液晶光閥之研究★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈
★ 電控及光控膽固醇液晶光閥特性與結構之研究★ 非對稱式液晶光電元件及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著液晶技術的日趨成熟,液晶元件的研究更是蓬勃發展,而液晶散射光閥便是其中之一。目前最廣受應用的液晶散射光閥為聚合物分散液晶(polymer dispersed liquid crystal, PDLC),可利用其混合物之單體聚合反應引致液晶與高分子相分離而產生散射,並藉由外加電壓改變此液晶元件的散射態以及穿透態。此外,一般的散射光閥需對元件持續施加電壓方能維持其穿透狀態,在提倡綠色能源的時代持續耗電的元件將陸續被改良,取而代之的便是雙穩態的散射光閥,在利用電壓切換狀態之後,即便關閉其施加電壓亦能維持著穿透狀態,且能利用外加另一電壓而使該穿透態切換回散射態。
本論文使用經濟、環保及其製程簡便的中孔洞氧化矽奈米粒子做為散射體,將其摻入向列型雙頻液晶後,便能得到具有雙穩態效果的液晶散射光閥,另改變外加電場的頻率可使元件在穿透態與散射態之間切換,且電場關閉後仍能維持在穿透態或散射態。本論文將分別討論(1)中孔洞氧化矽奈米球摻雜不同液晶對其穿透率及穩態效應的影響、(2)探討不同配向處理的基板對摻雜中孔洞氧化矽奈米粒子液晶元件的穿透率及穩態效應的影響、(3)中孔洞氧化矽奈米粒子之摻雜濃度對於液晶元件的穿透率及穩態效應影響以及(4)摻雜中孔洞氧化矽奈米粒子對於藍相液晶溫寬的影響。利用中孔洞氧化矽奈米粒子的多孔洞特性能形成液晶分子區塊,使元件內部材料產生折射率不匹配以及不連續進而造成光散射,而中孔洞氧化矽奈米粒子與液晶分子間的作用力會使奈米粒子隨著液晶分子受到電場而轉動。
若中孔洞氧化矽奈米粒子摻雜雙頻液晶,施加低頻交流電能將液晶元件切換至穿透態,而施加高頻交流電則切換至散射態。有關電壓關閉後的穩態效應機制,我們推測是因中孔洞氧化矽奈米粒子周圍液晶分子的分佈,使得中孔洞氧化矽奈米粒子彼此相互排斥而不團聚,此外,排斥力會抵消元件恢復的能量,使液晶元件達到穩態,詳細原理將在本論文後續章節說明。因此,本論所提出之雙穩態電控液晶光閥具有環保與製程簡便等優點,相信未來在生活中的應用具相當之潛力。
摘要(英) With the continuous growth of liquid crystal (LC) technology, the developments of LC devices have been being paid much attention by scientists. Among them, scattering mode LC light shutter is one of the popular techniques, such as polymer dispersed LCs (PDLCs). One of the scattering mechanisms is based on the formation of LC droplets by means of the polymerization induced phase separation of pre-polymer and LCs. Moreover, the scattering state and transparent state can be switched between each other by applying an external voltage. It should be noted that the continuously applied voltage is required to keep the transparent state. Restated, the transparent state will be switched back to scattering state when the applied voltage is turned off. Regarding the energy saving, the bistable scattering mode LC light shutters are the great candidates to save power, and to replace the devices with the disadvantage of high power consumption. Briefly, the bistable LC devices, which do not require real-time information update and do consume power when the displayed image content needs to be changed. One can apply an external voltage to switch the scattering mode LC light shutter to transparent state, and can also apply another external voltage to switch the transparent LC light shutter back to scattering state.
In this study, mesoporous silica nanoparticles (MSNs)-doped nematic LCs are adopted to demonstrate light scattering. Such an approach provides the advantages of low-cost, environmental protection, and simple fabrication processes. Moreover, the dual frequency LCs doped with MSNs present a bistable scattering mode LC light shutter. It is also demonstrated that the scattering and transparent states can be switched with each other by changing the frequency of the applied voltage. After the applied voltage is turned off, the transmission can be kept stable. The following four topics will be discussed in this thesis, including (1) the effect of various LC materials doped with MSNs onto the transmission and stability performances; (2) the effect of various surface alignment layers onto the scattering mode LC device; (3) the effect of concentration of MSNs onto the scattering mode LC device; and (4) the effect of MSNs onto the existing temperature of blue phase LCs.
Considering the mechanism of light scattering based on MSNs-doped LCs, it can be understood that the doped mesoporous will affect the orientation of LCs so that the LC domains can be generated in the LC cell. Hence, the incident light can be scattered by the LC domains due to the mismatch and the discontinuousness of refractive indices of LC and MSNs. Importantly, we infer that the orientation of the rod-like MSNs will be rotated by the torque produced by the application of external voltage onto the LCs due to the molecular interaction force between the doped MSNs and LCs. To demonstrate the bistable scattering mode LC light shutter, dual-frequency LCs doped with MSNs are employed to obtain the stable scattering and transparent states. Briefly, such a LC device can be switched to transparent (scattering) state by the application of external voltage having relative low (high) frequency since the dual-frequency LCs present positive (negative) dielectric anisotropic LCs with the application of external voltage having relative low (high) frequency. Moreover, we infer that the LCs will distribute around the MSNs so that the MSNs do not be aggregated with each other. Once the orientation of the rod-like MSNs, caused by the LCs, is parallel to the direction of the applied voltage, the stable transparent state can be obtained due to the scales of LCs and MSNs. As the result, the bistable scattering mode LC light shutter reported in this thesis possesses many advantages, such as low power consumption (environmental protection), simply fabrication processes, and so on. We believe that such a bistable LC light shutter has huge potential for application of electronics in the near future.
關鍵字(中) ★ 散射
★ 雙穩態
★ 中孔洞材料
★ 配向膜
關鍵字(英) ★ scattering
★ bistable
★ mesoporous
★ alignment layer
論文目次 中文摘要 i
Abstract iii
誌謝 vi
目錄 vii
表目錄 xi
圖目錄 xii
符號說明 xx
第一章 緒論 1
§1.1 前言 1
§1.2 研究動機 1
§1.3 論文架構 2
第二章 液晶簡介 4
§2.1 液晶簡介 4
§2.2 液晶分類 5
§2.3 液晶物理 14
§2.4 藍相液晶 22
2.4.1 藍相液晶簡介 22
2.4.2 藍相液晶的結構 23
第三章 實驗原理 26
§3.1 實驗理論 26
3.1.1 散射原理 26
3.1.2 中孔洞氧化矽奈米粒子介紹 27
3.1.3 散射元件 29
§3.2 配向理論 32
3.2.1 配向機制 32
3.2.2 分子排列形式 33
§3.3 藍相液晶特性 39
3.3.1 藍相液晶的光電特性 39
3.3.2 藍相液晶的快速反應 42
3.3.3 藍相液晶寬溫技術 43
第四章 實驗製程 46
§4.1 材料介紹與實驗製程 46
4.1.1 材料介紹 46
4.1.2. 液晶盒製程 49
§4.2 實驗材料比例 52
§4.3 實驗架構 54
4.3.1 以偏光顯微鏡觀察樣品 54
4.3.2 利用溫控平台控制藍相液晶溫度 55
4.3.3 量測液晶光電特性 56
第五章 結果與討論 58
§5.1 柱狀中孔洞氧化矽奈米粒子摻雜正型向列型液晶 58
5.1.1 柱狀中孔洞氧化矽奈米粒子摻雜液晶引致光散射原理 58
5.1.2 液晶黏滯係數對散射效應的影響 62
5.1.3 水平配向膜對正型液晶暫時穩態之影響 65
§5.2 柱狀中孔洞氧化矽奈米粒子摻雜雙頻向列型液晶 71
5.2.1 利用雙頻液晶製作雙穩態散射光閥 71
5.2.2表面配向膜對雙穩態切換的影響 75
5.2.3 摻雜柱狀中孔洞氧化矽奈米粒子濃度對各種液晶排列形式之液晶盒穿透率及穩態切換的影響 84
5.2.4 反應速率的量測 94
§5.3 柱狀中孔洞氧化矽奈米粒子摻雜藍相液晶之研究 101
5.3.1 摻雜濃度對藍相溫寬的影響 101
第六章 結論與未來展望 104
§6.1 結論 104
§6.2 未來展望 106
參考文獻 109
參考文獻 [1] 謝依萍, 工業材料雜誌282期, 工研院材化所, 新竹市.
[2] H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett, 82, 3168 (2003).
[3] B. Bahoadur, “Liquid Crystals-Applications and User,” World Scientific Press, Singapore (1990).
[4] P. gde Gennes and J. prost, “The physics of Liquid Crystals,” 2nd ed., Clarendon Press, Oxford (1993).
[5] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer-Verlag, New York (1994).
[6] 松本正一、角田示良,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出版(1996).
[7] S. Chandrasekhar, “Liquid Crystal,” Cambridge University Press, USA (1992).
[8] W. H. de Jeu, “Physical properties of liquid crystalline materials,” Gordon & Breach, New York (1980).
[9] S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103, 101105 (2013).
[10] 黃琬翎, “摻雜偶氮材料在藍相液晶中之光電特性,”國立成功大學物理研究所,台南市 (2011).
[11] P. J. Collings and M. Hird, “Introduction to liquid crystals chemistry and physics,” CRC Press, London (1997).
[12] L. Rao, “Low voltage blue phase liquid crystal display,” University of Central Florida, Orlando, Florida (2012).
[13] M. Gu, “cholesteric” in “the world of liquid crystal displays,” retrieved from http://www.personal.kent.edu/~mgu/ (2011).
[14] D. K. Yang, X. Y.Huang and Y. M.Zhu, “Bistable cholesteric reflective displays: materials and drive schemes,” Annu. Rev. Mater. Sci. 27, 117 (1996).
[15] I. C. Khoo and S. T. Wu, “Optics and nonlinear optics of liquid crystals,” World Scientific, Singapore (1993).
[16] O. Lehmann and Z. physic, “Zeitschrift fu ̈r Physikalische,” Chem. 4, 462 (1889).
[17] S. Chandrasekhar, Charles Frank, J. D. Litster, W. H. De Jeu and Lin Lei, “Liquid Crystals of Disc-Like Molecules and Discussion,” the Royal Society, London (1983).
[18] B. Bahadur, “Liquid Crystals Applications and Uses,” Vol. 1, World Scientific, Singapore (1993).
[19] G. W. Gray, “Thermotropic Liquid Crystals,” the Society of Chemical Industry (1987).
[20] Grant R. Fowles, “Introduction to Modern Optic,” 2nd ed., University of Utah, New York (1975).
[21] 朱自強,王仕璠,蘇顯渝,“現代光學教程,” 四川大學出版社,四川省 (1990).
[22] I. C. Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena,” John Wiley & Press, New York (1995).
[23] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc., 29, 83 (1933).
[24] H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Soc., 29, 19 (1933).
[25] 黃子強, “液晶顯示原理,” 國防工業出版社, 北京 (2006).
[26] A. Yariv, “Quantum Electronics,” John Wiley & Sons Press, New York (1989).
[27] P. P. Crooker, “Blue phase” in “Chirality in liquid crystals,” Springer Verlag, New York (2001).
[28] C.Bohley and T.Scharf, “Polarization of light reflected by cholesteric blue phases,” J. Opt. A: Pure Appl. Opt. 6, S70-S80 (2004).
[29] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” 2nd, John Wiley & Sons Press, New York (2014).
[30] H.Kikuchi, “Liquid crystalline blue phases” in “Liquid crystalline functional assemblies and their supramolecular structures,” Springer Verlag, Berlin (2008).
[31] R. O. Prum, H. T. Rodolfo, S. Williamson, J. Dyck, “Coherent light scattering by blue feather barbs,” Nat. Lett. 396, 28 (1998).
[32] D. Colton and R. Kress, “Inverse Acoustic and Electromagnetic Scattering Theory,” 2nd, Springer, Berlin (1998).
[33] M. Ma, Y. Zhang, W. Yu, H. Y. Shen, H. Q. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids and Surfaces A, Lett. 212, 219 (2003).
[34] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd. (2006).
[35] S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, “Liquid Crystals: Viscous and Elastic Properties in Theory and Applications,” John Wiley & Sons Press, 321, New York (2009).
[36] 李柏逸, “利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究,” 國立中央大學光電所, 桃園市 (2016).
[37] D. Meyer, “New technique of aligning liquid crystals on surfaces,” Appl. Phys. Lett. 29, 691 (1976).
[38] C. Mauguin, “Sur les cristaux liquids de Lehman,” Bull. Soc. Fr. Min. 34, 71 (1911).
[39] M. Suzuki, M. Kakimoto, T. Konishi, Y. Imai, M. Iwamoto and T. Hino, “Preparation of monolayer films of aromatic polyamic acid alkylamine salts at air-water interface,” Chem. Lett. 395 (1986).
[40] H. Choi, H. Higuchi and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter 7, 4252–4256 (2011).
[41] A. Yoshizawa, “Material design for blue phase liquid crystals and their electro-optical effects,” RSC Adv. 3, 25475–25497 (2013).
[42] S. Y. Lu and L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35, 562 (2010).
[43] G. Heppke, B. Jérôme, H.S. Kitzerow,P. Pieranski, “Electrostrictionof the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. France 50, 2991-2998 (1989).
[44] H. Stegemeyer and F. Porsch, “Electric field effect and phase transitions in liquid-crystalline blue-phase systems” Phys. Rev. A 30, 3369 (1984).
[45] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64 (2002).
[46] H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express 2, 121501 (2009).
[47] E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phase,” Phys. Rev. E 81, 041703 (2010)
[48] F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J.W. Hands, S. S. Choi, R. H. Friend and H. J. Coles, “Blue-phase templated fabrication of three dimensional nanostructures for photonic applications,” Nat. Mater.11, 599-603 (2012).
[49] 劉鄭楷, “染料摻雜液晶薄膜中利用光配向技術改變液晶預傾角之研究與應用,” 國立成功大學, 台南市 (2008)
[50] Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
指導教授 鄭恪亭(Cheng Ko-Ting) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明