博碩士論文 103226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.239.33.139
姓名 黃皓瑄(Hao-Hsuan Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用三水合醋酸鈉固液態相變增進散熱能力之被動冷卻系統研究
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為解決高功率LED晶片接面溫度過高的問題,本論文使用固態的三水合醋酸鈉相變材料相變時大量吸收潛熱的特性,延長高功率LED能夠使用的時間。本論文使用十水合碳酸鈉作為成核劑,證實能夠有效抑制三水合醋酸鈉嚴重過冷的問題。此外本論文基於總體熱含量法的概念建立了一套快速設計的方法,藉由數學式快速計算出相變式冷卻系統的有效使用時間以及設計上需要的系統參數。此外本論文中提出相變式散熱膠囊的概念,使相變式冷卻的方法能夠被更廣泛的應用。
摘要(英) The junction temperature of high power LED is an essential issue for practical applications. In this work, the high latent heat of NaCH3COO·3H2O (Sodium Acetate Trihydrate, SAT) is proposed and utilized to prolong the practical using time of a high power LED. With the addition of NaCO3·10H2O as the nucleation agent, supercool phenomena of SAT can be effective suppressed. A quick design algorithm based on lumped heat capacity method to evaluate the working time and system parameters of a cooling system using PCM (phase change material) is derived and proposed with detail mathematical formulation. In addition, a PCM capsule concept is proposed to provide a flexible extension of the usage of PCM cooling.
關鍵字(中) ★ 三水合醋酸鈉
★ 相變
★ 被動式散熱
關鍵字(英) ★ sodium acetate trihydrate
★ phase change
★ passive cooling
論文目次 目錄
摘要 1
Abstract 2
誌謝 3
目錄 4
圖目錄 6
表目錄 10
第一章 緒論 11
1-1 前言 11
1-2 研究動機 13
第二章 基本原理與文獻參考 14
2-1 引言 14
2-2 熱傳遞基本理論 14
2-2-1 熱傳導 14
2-2-2 熱對流 18
2-2-3 熱輻射 20
2-3 暫態傳導 21
2-3-1 總體熱含量法(Lumped capacitance method) 21
2-3-2 總體熱含量法的適用性 23
2-4 相變材料研究 24
2-4-1 相變材料選擇與特性分析 25
2-4-2 鹽類相變材料的過冷與相分離 27
2-4-3 成核劑與增稠劑 30
第三章 相變研究實驗與數據分析 33
3-1 成核劑調配比例實驗 33
3-2 量測實驗架構與實驗方法 34
3-3 實驗結果與數據分析 35
第四章 數值模擬與分析 51
4-1 有限元素分析流程 51
4-2 模型建立 52
4-3 相變模擬與結果分析 57
第五章 快速設計 66
5-1 引言 66
5-2 快速設計法簡介 66
5-3 快速設計法實際應用案例 75
第六章 結論 79
參考文獻 80
附錄 83
Appendix 1.石墨層放射率修正 83
Appendix 2.石墨層熱點溫度修正 85
參考文獻 [1] C. Nuese, J. Tietjen, J. Gannon, and H. Gossenberger, "Optimization of Electroluminescent Efficiencies for Vapor‐Grown GaAs1− x P x Diodes," Journal of The Electrochemical Society, vol. 116, pp. 248-253, 1969.
[2] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Japanese Journal of Applied Physics, vol. 31, p. L139, 1992.
[3] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, p. L797, 1995.
[4] H. E. Feustel, "Thermal performance of phase change wallboard for residential cooling application," Lawrence Berkeley National Laboratory, 2011.
[5] X. Xu, Y. Zhang, K. Lin, H. Di, and R. Yang, "Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings," Energy and Buildings, vol. 37, pp. 1084-1091, 2005.
[6] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, "Review on thermal energy storage with phase change: materials, heat transfer analysis and applications," Applied thermal engineering, vol. 23, pp. 251-283, 2003.
[7] G. M. Grover. (1996, November 3) Inventor Of Popular Heat Transfer Device. New York Times.
[8] B. Gebhart, Heat conduction and mass diffusion vol. 634: McGraw-Hill New York, 1993.
[9] T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of heat and mass transfer: John Wiley & Sons, 2011.
[10] F. Incropera and D. DeWitt, "Introduction to heat transfer," 1985.
[11] A. Heinz and W. Streicher, "Application of phase change materials and PCM-slurries for thermal energy storage," Institute of Thermal Engineering, Graz University of Technology, Austria, 2006.
[12] L. Cabeza, "Storage techniques with phase change materials," Thermal energy storage for solar and low energy buildings, State of the art by the IEA Solar Heating and Cooling Task, vol. 32, pp. 77-105, 2005.
[13] J. M. Marín, B. Zalba, L. F. Cabeza, and H. Mehling, "Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties," Measurement science and technology, vol. 14, p. 184, 2003.
[14] P. Hu, D.-J. Lu, X.-Y. Fan, X. Zhou, and Z.-S. Chen, "Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC," Solar Energy Materials and Solar Cells, vol. 95, pp. 2645-2649, 2011.
[15] F. S. Bates and G. H. Fredrickson, "Block copolymer thermodynamics: theory and experiment," Annual Review of Physical Chemistry, vol. 41, pp. 525-557, 1990.
[16] H. Kimura and J. Kai, "Phase change stability of sodium acetate trihydrate and its mixtures," Solar Energy, vol. 35, pp. 527-534, 1985.
[17] R. Naumann, T. Fanghänel, and H. Emons, "Thermoanalytical investigation of sodium acetate trihydrate for application as a latent heat thermal energy storage material," Journal of Thermal Analysis and Calorimetry, vol. 33, pp. 685-690, 1988.
[18] H. W. Ryu, S. W. Woo, B. C. Shin, and S. D. Kim, "Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials," Solar energy materials and solar cells, vol. 27, pp. 161-172, 1992.
[19] J. C. Choi, S. D. Kim, and G. Y. Han, "Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage," Solar energy materials and solar cells, vol. 40, pp. 71-87, 1996.
[20] 李晶, 劉中良, and 馬重芳, "改善三水醋酸鈉固液相變性能的實驗研究," 工程熱物理學報, vol. 27, pp. 817-819, 2006.
[21] 陳憬憲, "穩態紅外線 LED 封裝熱阻量測; Measurement of thermal resistance of LED package with infrared at Steady state," 2010.
[22] 張佐鴻, "紅外線穩態熱阻量測法之石墨層影響之研究; Research on the influence of graphite layer to the steady state thermal resistance measurement method using infrared irradiation," 2014.
指導教授 鍾德元(Te-Yuan Chung) 審核日期 2016-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明