博碩士論文 103226041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.62.181
姓名 陳亭惠(Ting-Hui Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
(Studies of surface stabilization effect based on chiral polymer-doped blue phase liquid crystals)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究
★ 離子性材料對向列型液晶自發性配向及其應用之研究★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究
★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器★ 低操作電壓高分子分散型液晶及其應用之研究
★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡
★ 光控及電控散射型/吸收型液晶光閥之研究★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈
★ 電控及光控膽固醇液晶光閥特性與結構之研究★ 非對稱式液晶光電元件及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藍相液晶存在溫度範圍與其對電壓的穩定性為藍相液晶在近年來受到相當
重視的研究主題之一,因藍相態存在於膽固醇態與各向同性態之間的狹窄
溫度範圍中,因此如何拓寬藍相液晶存在的溫度範圍顯得相當重要。西元
2002 年 H. Kikuchi 所發表的高分子穩定藍相液晶技術(Polymer-stabilized blue phase liquid crystals, 簡稱 PSBP-LCs)為目前最主要拓寬藍相液晶存在溫寬的方式[1],而本論文有別於高分子聚合物穩定藍相液晶結構,利用旋性聚合物在藍相態與不同溫度的各向同性態下進行拓寬藍相液晶存在溫度範圍的測試。
經實驗結果證實,旋性聚合物摻雜藍相液晶進行光聚合後亦可拓寬藍相液晶存在溫寬,為深入探討其機制,本論文以以下幾種不同變數分別進
行討論:(1)旋性聚合物的摻雜濃度、(2)聚合物照光聚合過程的溫度、(3)聚合物照光聚合時間及(4)液晶盒厚度等。經由不同參數的改變,發現高濃度旋性聚合物摻雜的樣品在各向同性態下進行照光聚合後,依然能拓寬藍相存在的溫寬範圍,證明除了 PSBP-LCs 利用藍相液晶本身的缺陷線穩固藍相外,亦可用聚合物在基板表面上的結構穩固藍相,我們稱之為表面穩固效應(Surface-stabilized blue phase liquid crystals,簡稱 SSBP-LCs)。據文獻指出,一般聚合物僅能在溫寬極窄的藍相態下進行光聚合反應以拓寬藍相的溫寬,而摻雜旋性聚合物較能在不同溫度的各向同性態下進行寬溫比一般聚合物更簡單地拓寬藍相溫寬。
最後,我們比較 SSBP-LCs 與 PSBP-LCs 將藍相存在溫度拓寬後其光電特性的差異,實驗證實,SSBP-LCs 所穩固的藍相液晶光電特性亦不亞於PSBP-LCs 所穩固的藍相液晶,也因少了聚合物在液晶盒內部之網絡結構的影響,故可提供更快速的反應速度。最後,依本論文所發現的現象提出SSBP-LCs 穩定藍相液晶的寬溫機制,相信此成果將對藍相液晶未來之技術發展有相當之助益。
摘要(英) Recently, the temperature range and stabilization of structures with the application of external voltages of blue phase liquid crystals (BP-LCs) have become two of the key research topics for BP-LCs. Both of them have been paying much attention significantly by scientists. Since the temperature range of BP-LCs is extremely narrow, it is clear that the extension of temperature range is one of the key points in BP-LCs field. Currently, polymer-stabilized BP-LCs (PSBP-LCs), reported by H. Kikuchi in 2002, becomes the most commonly used method to extend the temperature range of BP-LCs.[1] In this thesis, we do lots of experiments about chiral polymer-doped BP-LCs but not achiral polymer-doped BP-LCs. The reported stabilization of BP-LCs is based on the polymerization of chiral polymer at various temperature of LCs at blue and isotropic phases.
According to the experimental results, the polymerized chiral polymer onto the substrates can be used to extend the temperature ranges of BP-LCs significantly. To elucidate the mechanism for extending the temperature ranges of BP-LCs, several factors for the processes of photo-polymerization are considered. They include (1) the concentrations of chiral polymer; (2) the temperatures of LCs (blue and isotropic phases) during photo-polymerization; (3) the UV-curing durations; (4) the cell gaps, and others. It turns out that the temperature ranges of BP-LCs can be extended by the polymerized chiral polymer of 6 wt% by UV illumination at isotropic phase. The mechanism of extending the temperature ranges of BP-LCs by chiral polymer-doped BP-LCs is based on the polymerized chiral polymer structures onto the substrates, which is different from that of PSBP-LCs. Such a stabilization approach is called “Surface-stabilized blue phase liquid crystals (SSBP-LCs)”. According to the references, PSBP-LCs can only be achieved by polymerizing the doped polymers at the temperature of blue phase, thus the processes for achieving SSBP-LCs is much easier than PSBP-LCs by polymerizing the doped chiral polymers at isotropic phases.
Finally, we have also compared the electro-optical properties of SSBP-LCs with those of PSBP-LCs, and the results show that the properties of SSBP-LCs are as good as those of PSBP-LCs. Notably, the response time of SSBP-LCs is shorter than that of PSBP-LCs. Accordingly, we believe that such a novel approach can improve the development of BP-LCs in LC technology.
關鍵字(中) ★ 藍相液晶
★ 旋性聚合物
★ 聚合物
關鍵字(英)
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 動機 1
1.3 論文架構 2
第二章 液晶簡介 4
2.1 何謂液晶 4
2.2 液晶的歷史 4
2.3 液晶的分類 6
2.3.1溶致型液晶 6
2.3.2熱致型液晶 7
2.4 液晶的物理特性 13
2.4.2介電異向性(dielectric anisotropy) 13
2.4.3光學異向性(雙折射,birefringence) 14
2.4.4液晶連續彈性體理論(elastic continuum theory of LCs) 18
第三章 藍相液晶簡介 20
3.1 何謂藍相液晶 20
3.2 藍相液晶的雙螺旋結構 21
3.3 藍相液晶的光電特性(Electro-Optical Properties) 25
3.3.1電致伸縮效應(Electrostriction effect) 25
3.3.2相轉變(Phase transition) 28
3.3.3克爾效應(Kerr effect)-藍相液晶的快速反應 29
3.4 藍相液晶的判別方式 31
3.4.1偏光顯微鏡(polarized optical microscopy) 31
3.4.2反射頻譜觀察(reflection spectrum) 32
3.4.3差示掃描量熱分析(differential scanning calorimetry, DSC) 33
3.4.4科索圖形(Kossel diagrams) 33
3.5 藍相寬溫技術 35
3.5.1高分子穩定藍相液晶(PSBP-LC) 36
3.5.2 藍相液晶模板 36
第四章 實驗方法與過程 38
4.1 樣品製程 38
4.1.1 材料介紹 38
4.1.2 液晶盒製作與拆解 41
4.1.3 液晶樣品盒厚度量測 44
4.2 實驗方法 47
4.2.1 偏光顯微鏡觀察樣品 47
4.2.2 溫控器控制樣品溫度 48
4.3 實驗架構 49
4.3.1 藍相液晶溫寬量測 49
4.3.2 照射紫外光之高分子聚合過程 51
4.3.3 藍相液晶光電特性量測 52
第五章 結果與討論 53
5.1 藍相液晶存在溫度範圍 53
5.1.1未摻雜旋性聚合物之藍相液晶存在溫寬量測 53
5.1.2 摻雜旋性聚合物及光起始劑之藍相液晶存在溫寬測量 56
5.2 摻雜旋性聚合物樣品照射紫外光後之效應 61
5.2.1照光時溫度與藍相液晶存在溫寬關係 61
5.2.2照光時間與藍相存在溫寬關係 70
5.2.3樣品盒厚度與藍相存在溫寬關係 72
5.3 表面穩固藍相液晶拆解並重製後的藍相液晶寬溫效果測試 75
5.4 藍相液晶模板製作及其藍相液晶的存在溫寬測量 77
5.5藍相液晶之光電特性比較 79
5.5.1藍相液晶的穿透度與電壓曲線 79
5.5.2藍相液晶反應時間 82
第六章 結論與未來展望 83
6.1 結論 83
6.2未來展望 84
參考文獻 86
參考文獻 [1] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer- stabilized liquid crystal blue phases,” Nat. Mater. 1, 64 (2002).
[2] H. J. Coles and M. N. Pivnenko, “Liquid crystal blue phase with a wide temperature range,” Nature 436, 997 (2005).
[3] A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem. 15, 3285 (2005).
[4] F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J.W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Bluephase templated fabrication of threedimensional nanostructures for photonic applications,” Nat. Mater. 11, 599 (2012).
[5] E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases.” Phys. Rev. E 81, 041703 (2010).
[6] H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express 2, 121501 (2009).
[7] J. M. Wong, J. Y. Hwang, and L. C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft Matter 7, 7956 (2011).
[8] I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8, 4355 (2012).
[9] 田民波,TFT液晶顯示原理與技術,初版,五南出版社,民國97年。
[10] P. J. Collings and Michael Hird, Introduction to Liquid crystals chemistry and physics, CRC Press, London (1997).
[11] Epifanio G. Virga, Variational theories for liquid crystals, Chapman & Hall London, New York (1994).
[12] I. C. Khoo and S.T. Wu, Optics and nonlinear optics of liquid crystals, Word Scientific, Singapore (1993).
[13] W. H. de Jeu, Physical properties of liquid crystalline materials, Gorden & Breach, New York (1980).
[14] S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D. H. Ko, D. J. Gardiner,S. Nosheen, Y. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103, 101105 (2013).
[15] 黃婉玲,「摻雜偶氮材料在藍相液晶中之光電特性」,國立成功大學,碩士論文,民國100年。
[16] L. Rao, “Low voltage blue phase liquid crystal display,” University of Central Florida, master′s dissertation (2012).
[17] M. Gu, Cholesteric Liquid Crystal Reflective mode, retrieved from http://www.personal.kent.edu/~mgu/LCD/chlc.htm (2011).
[18] C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[19] P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Second Edition, John Wiley & Sons Inc (2010).
[20] P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics, CRC Press, London (1997).
[21] P. P. Crooker, “Blue Phase” in Chirality in liquid crystals, Springer Verlag, New York (2001).
[22] C. Bohley and T. Scharf, “Polarization of light reflected by cholesteric blue phase,” J. Opt. A: Pure Appl. Opt. 6, S77 (2004).
[23] H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct Bond 128, 99 (2008).
[24] P. P. Crooker, “Plenary Lecture. The blue phases. A review of experiments”, Liquid Crystals 5:3, 751 (1989).
[25] H. Stark, and H. R. Trebin, “Theory of electrostriction of liquid-crystalline blue phases I and II,” Physical Review A, 44, 4 (1991).
[26] J. I. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–de Gennes theory: Effect of an applied electric field,” Physical Review E, 80, 031706 (2009).
[27] G. Heppke, B. Jérôme, H. S. Kitzerow, and P. Pieranski, “Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. France 50, 2991 (1989).
[28] S. Y. Lu and L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35, 562 (2010).
[29] H. Stegemeyer and F. Porsch, “Electric field effect on phase transitions in liquid-crystalline blue-phase systems,” Phys. Rev. A 30, 3369 (1984).
[30] H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter 7, 4252-4256 (2011).
[31] A. Yoshizawa, “Material design for blue phase liquid crystals and their electro-optical effects,” RSC Adv. 3, 25475 (2013).
[32] H. Kikuchi, “Blue Phases for LCDs Based on Isotropic-to-Anisotropic Transitions”, Information Display Online, retrieved from http://informationdisplay.org/IDArchive/2009/November
[33] J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A 37, 1754 (1988).
[34] D. Chen, M. R. Tuchband, B. Horanyi, E. Korblova, D. M. Walba, M. A. Glaser, J. E. Maclennan, and N. A. Clark, “Diastereomeric liquid crystal domains at the mesoscale”, Nature Communications 6, 7763 (2015).
[35] Chemblink, “Paliocolor LC 756" in "Online Database of Chemicals from Around the World,” retrieved from http://www.chemblink.com/products/ 223572-88-1.htm (2014).
[36] SIGMA-ALDRICH, retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/196118
[37] W. E. Haas, K. F. Nelson, J. E. Adams, G. A. Dir, “U.V. imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[38] 詹鈞証,「藍相液晶摻雜旋性聚合物之光電特性研究」,國立中央大學,碩士論文,民國103年。
[39] K. M. Chen, S. Gauza, H. Xianyu, and .S. T. Wu, “Hysteresis Effects in BluePhase Liquid Crystals,” J. Disp. Technol. 6, NO. 8, 318 (2010).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明