博碩士論文 103226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.238.184.78
姓名 施克涵(Ko-Han Shih)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 理論探討以金屬內部光輻射為基礎之太陽能光電轉換
(Theoretical investigations of solar energy conversion based on internal photoemission in metals)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究★ 光波至混合電漿波導極化模態轉換器
★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對基於金屬內部光輻射效應(internal photoemission)為主要運作機制之太陽能光電轉換元件進行其光電轉換效率與相關之物理機制之理論探討。透過虛位勢法(pseudopotential method)求得鋁、銅、銀之真實能帶結構(band structure)並藉此分析於考慮光激發過程中電子動量守恆條件與否下,光激發電子於能量軸上之分布;同時將入射電磁波於一維及三維空間位置之分布、受激發電子於傳遞過程之能量損耗與其於金屬與半導體(氧化物)介面之有限出射機率(emission probability)等因素納入考慮,分別對n型與p型平面蕭基元件(planar Schottky device)以及本實驗室團隊所設計之具二維金屬光柵之鋁-二氧化鈦-銀元件進行分析。

於計算中發現鋁、銅、銀之受激發電子於能量軸上之分布情形迥異。忽略動量守恆條件下,電子能態密度(density of states, DOS)之連續分布導致3種材料之受激發電子能譜於標準AM1.5G之太陽光譜內呈較平緩且連續之分布。考慮動量守恆條件並不使鋁之結果有明顯之差異,但對於銅與銀,由於d能帶(d-bands)結構之分布導致須以大於特定能量(銅: 2.2 eV;銀: 3.5 eV)之光子入射才能產生有效之光激發。此外,對於鋁而言,在太陽光譜範圍內將各躍遷組合所對應之動量矩陣元素(momentum matrix element)設為常數為相對合理之假設;然而對於銅,該假設會低估由其s能帶(s-band)與d能帶頂部所產生之向上躍遷機率。

透過對n型蕭基元件之分析得知,於考慮動量守恆條件下,由於沒有光激發所需之最小入射光子能量的限制,鋁之功率轉換效率(power conversion efficiency, PCE)極值為0.5530%,發生於當能障高度(barrier height)及金屬厚度分別為0.95 eV與13.0 nm時,於3種材料中最高;其量子產率(quantum yield)於能障較低時遠高於其他兩種材料,然而其值隨著能障高度上升而快速下降。銅之d能帶與s能帶於能量軸上之位置差異導致銅之量子產率隨能障高度增加呈兩段式變化。由於源自d能帶之受激發電子其額外能量(excess energy)較低而僅有部分能通過能障,因此銅之功率轉換效率極值僅為0.0022%(於能障高度: 0.9 eV,金屬厚度: 17.0 nm)。於太陽光譜內,銀之受激發電子主要源自於s能帶,其較高之額外能量導致銀之量子效率對能障高度之相依性較弱,但亦使其生命週期(lifetime)較短而導致其量子產率與功率轉換效率隨金屬厚度增加而快速下降。銀之光電轉換效率極值為0.0162%(於能障高度: 2.2 eV,金屬厚度: 5.0 nm),其主要受限於絕大部分太陽光譜內之光子無法產生有效之光激發。在忽略動量守恆條件下,於3種材料中仍以鋁擁有最大之功率轉換效率極值,銀次之,銅則同樣d能帶之受激發電子其能量較低而對應最小之值。

對於p型蕭基元件,以鋁為材料下所得之光電流隨能障高度與金屬厚度之變化形式與n型相比並無顯著變化,唯因相同額外能量下電洞之生命週期較電子為短,因而所產生之光電流隨之減小。於考慮動量守恆條件下,將躍遷相對係數納入計算下所得之功率轉換效率極值為0.2673%(於能障高度: 0.95 eV,金屬厚度: 11.0 nm);相較之下,n型元件於同樣計算方式下所得之值為0.2799%(於能障高度: 0.95 eV,金屬厚度: 13.0 nm)。對於銅而言,其p型與n型元件之結果恰好相反。由於d能帶電子之躍遷所產生之電洞其額外能量較高但生命週期過短,導致p型元件之量子產率對能障高度之相依性較弱,但隨金屬厚度增加而快速遞減。以標準AM1.5G太陽光譜內之整體表現而言,對於鋁與銅n型元件之光電轉換效率優於p型元件。

最後,由具二維金屬光柵之鋁-二氧化鈦-銀元件之相關分析顯示,於標準AM1.5G太陽光譜範圍內,該元件於考慮動量守恆條件下所得之淨量子產率為7.9293%;相較之下,相同材料與尺寸之平板結構之淨量子產率則為5.8515%。若於波長為612.61 nm之入射光照射下,該二維光柵元件之淨量子產率更可達14.0073%。就分析中發現該元件之淨量子產率之主要限制來自於上層鋁光柵結構內激發之電子,能傳遞至中間層鋁與與二氧化鈦介面並有效射出之比例僅約20%。若受激發電子之傳遞損失與其於介面之出射角度限制可被完全克服(即考慮彈道傳遞情形下),則該元件之理論淨量子產率於標準AM1.5G太陽光譜範圍內可大於38%。
摘要(英) In this research, solar energy conversion based on internal photoemission in metals are theoretically investigated. The pseudopotential method is applied to first obtain the actual band structures of aluminum (Al), copper (Cu), and silver (Ag). The energy distributions of the photoexcited electrons within metals are quantified under the assumption of direct or fully nondirect transition. With the incorporation of the spatial distributions of incident electromagnetic wave, the propagation loss, and finite emission probabilities of photoexcited electrons, the theoretical limits of the quantum yield (QY) and the power conversion efficiency (PCE) of n- and p-type planar Schottky devices as a function of the barrier height Phi_B and metallic film thickness t_m are evaluated. Moreover, the photocurrent and the corresponding net quantum yield generated within one period of a two-dimensional (2D) metallic grating in Al-TiO_2-Ag configuration are estimated.

The energy distributions of photoexcited electrons are found to be disparate markedly among Al, Cu, and Ag. Under the fully nondirect approximation, the continuous distributions of the electron density of states results in a relatively smooth and continuous energy distributions of photoexcited electrons in each metal considered here.The condition of direct transition (i.e. momentum conservation) only has little influence on the energy distributions of photoexcited electrons in Al. However, such transition criteria leads to the threshold energies in Cu and Ag for the incident photons at which vertical transitions can occur. Within the solar spectrum range, the assumption of constant optical matrix element is applicable for Al. However, such an assumption may underestimate the upward transition rates from the s-band and the top of d-bands in Cu.

For planar n-type Schottky devices under the assumption of direct transition approximation, the absence of the threshold incident photon energy gives rise to the maximum PCE up to 0.5530% in Al at Phi_B=0.95 eV and t_m=13.0 nm, the highest one among the 3 metallic materials. The QY of Al-based devices is much higher than the other two metals at small barrier heights but drops rapidly as the barrier height increases. For Cu-based devices, the slope of the QY versus Phi_B plot shows 2 distinct phases owing to the energy differences of the s-band and d-bands in Cu with respect to the Fermi level. Since electrons excited from the d-bands carry smaller excess energies and only part of them have sufficient energies to overcome or tunnel through the barrier, the maximum PCE in Cu is merely 0.0022% (at Phi_B=0.9 eV and t_m=17.0 nm). For Ag, excitations are restricted from the s-band within the solar spectrum range. The relatively high excess energies possessed by electrons form the s-band cause a weak dependence of the QY of Ag-based devices on the barrier height but a strong dependence on the metallic film thickness because of their shorter lifetimes. The maximum PCE in Ag is 0.0162% (at Phi_B=2.2 eV and t_m=5.0 nm). It is mainly limited by photon energies within a large part of the solar spectrum. When the momentum conservation condition is ignored, Al has the highest maximum PCE while Cu has the lowest value as a consequence of the low excess energies carried by electrons excited from the d-bands.

For Al-based p-type Schottky devices, the behaviors of the photocurrent as a function of the barrier height and metallic film thickness are similar to their n-type counterparts. The major difference originates form a shorter hole lifetime compared to that of electrons at the same excess energy, leading to a slightly smaller photocurrent. With nonconstant optical matrix elements considered, the maximum PCE of Al-based p-type devices is 0.2673% (at Phi_B=0.95 eV and t_m=11.0 nm), while that of its n-type counterpart is 0.2799% (at Phi_B=0.95 eV and t_m=13.0 nm) using the same calculation method. In contrast to n-type devices, holes generated by electrons excitations from the d-bands in Cu carry relatively high excess energies and thus shorter lifetimes. As a result, the QY of Cu-based p-type devices is a strong function of the metallic film thickness but is dependent weakly on the barrier height. $n$-type Schottky devices are therefore superior to p-type Schottky devices for Al and Cu in terms of their overall performances within the solar spectrum range.

Finally, the analysis on the 2D grating in Al-TiO_2-Ag configuration shows that when the momentum conservation condition is considered, the net QY within solar spectrum is found to be 7.9293%,%, while that of a planar Si_3N_4- Al-TiO_2-Ag device with identical dimension is 5.8515%. At a free-space wavelength of 612.61 nm, its net QY can reach up to 14.0073%. The major limiting factor of the present device is that, only around 15% of those electrons excited within the top metallic structure can reach and emit through the Al-TiO_2 interface. If the losses during the electron transport and finite emission angles at the Al-TiO_2 interface are ignored, theoretically the net QY of the present device with 2D gratings can exceed 38% under standard AM1.5G solar illumination.
關鍵字(中) ★ 內部光輻射
★ 能帶結構
★ 蕭基
★ 太陽能光電轉換
關鍵字(英) ★ photoemission
★ band structure
★ Schottky
★ solar energy conversion
論文目次 中文摘要 i
英文摘要 iii
謝誌 vi
目錄 vii
圖目錄 x
表目錄 xvii
一 緒論 1
二 分析方法 7
三 平板蕭基元件之分析 32
四 金屬-氧化物半導體-金屬元件之分析 71
五 結論 84
附錄A 86
參考文獻 94
參考文獻 [1] National renewable energy laboratory. (2013, Nov. 18). Solar spectra [Online] Avaliable:
http://rredc.nrel.gov/solar/spectra/

[2] T. P. White, and K. R. Catchpole,“Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett., vol. 101, no. 7, pp. 073905, Aug. 2012.

[3] Mark. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotechnology, vol. 10, no. 1, pp. 25-34, Jan. 2015.

[4] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev., vol. 38, no. 1, pp. 45-56, Jul. 1931.

[5] C. N. Berglund, and W. E. Spicer, “Photoemission studies of copeer and silver: Experiment,” Phys. Rev., vol. 136, no. 4A, pp. 1044-1064, Nov. 1964.

[6] R. Y. Koyama, and Neville V. Smith, “Photoemission properties of simple metals,” Phys. Rev. B, vol. 2, no. 8, pp. 3049-3059, Oct. 1970.

[7] N. V. Smith, “Photoelectron energy spectra and the band structures of the noble metals,” Phys. Rev. B, vol. 3, no. 6, pp. 1862-1878, Mar. 1971.

[8] N. E. Christensen, and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B, vol. 4, no. 10, pp. 3321-3343, Nov. 1971.

[9] E. W. McFarland, and J. Tang, “A photovoltaic device structure based on internal electron emission,” Science, vol. 421, no. 6923, pp. 616-618, Feb. 2003.

[10] M. W. Knight, H. Sobhani, H. Sobhani, and N. J. Halas, “Photodetection with active optical antennas,” Science, vol. 332, no. 6, pp. 702-704, May 2011.

[11] M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron
emission,” Nano Lett., vol. 13, no. 4, pp. 1687-1692, Mar. 2013.

[12] W. Li, and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,”
Nano Lett., vol. 14, no. 6, pp. 3510-3514, May 2014.

[13] H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett., vol. 14, no. 3, pp. 1374-1380, Feb. 2014.

[14] S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE, vol. 9608, pp. 960816, Sep. 2015.

[15] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys., vol. 115, no. 13, pp. 134301, Apr. 2014.

[16] C. Scales, and P. Berini, “Thin-film Schottky barrier photodetector models,” J. Quamtum Electro., Vol. 46, No. 5, pp. 633-643, May 2010.

[17] D. A. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, “Photo and particle induced transport of excited carriers in thin film tunnel junctions,” Phys. Rev. B, vol. 76, no. 23, pp. 235408, Dec. 2007.

[18] F. Wang, and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett., vol. 11, no. 12, pp. 5426-5430, Oct. 2011.

[19] F. Wang, and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nature Commun., vol. 4, no. 1711, Apr. 2013.

[20] T. Gong, and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett., vol. 15, no. 1, pp. 147-152, Dec. 2014.

[21] P.-Y. Yu, and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, 2010.

[22] M. Casalino, “Internal photoemission theory: Comments and theoretical limitations on the performance of near-infrared silicon Schottky photdetectors,” J. Quantum Electron., vol. 52, no. 4, pp. 4000110, Apr. 2016.

[23] D. A. Neamen, Semiconductor Physics and Devices, 4th ed., McGraw-Hill, New York, 2012.

[24] A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces,
and geometry,” ACS Nano, vol. 10, no. 1, pp. 957-966, Dec. 2015.

[25] W. A. Harrison, Pseudopotential in the Theory of Metals, W. A. Benjamin, 1966.

[26] M. L. Cohen, and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, 1988.

[27] P. Harrison, Quantum Wells, Wires and Dots, 2nd ed., Wiley, 2005.

[28] C.-Y. Fong, and M. L. Cohen, “Energy band structure of copper by the empirical pseudopotential method,” Phys. Rev. Lett., vol. 24, no. 7, pp. 306-309, Feb. 1970.

[29] C.-Y. Fong, J. P. Walter, and M. L. Cohen, “Comparison of band structures and charge distributions of copper and silver,” Phys. Rev. B, vol. 11, no. 8, pp. 2759-2767, Apr. 1975.

[30] R. Mehrem, “The plane wave expansion, infinite integrals and identities involving spherical Bessel functions,” Appl. Math. Comput., vol. 217, no. 12, pp. 5360-5365, Feb. 2011.

[31] G. B. Arfken, and H. J. Weber, Nathematical methods for physics, 4th ed., Academic Press Inc., 1995.

[32] Y.-M. Zheng, R.-Z. Wang, and Y.-B. Li, “The empirical pseudopotential method in the calculation of heterostructure band offsets,” J. Phys.: Condens. Matter, vol. 8, no. 39, pp. 7321-7327, May 1996.

[33] H. J. Levinson, F. Greuter, and E. W. Plummer, “Experimental band structure of Aluminum,” Phys. Rev. B, vol. 27, no. 2 pp. 727-747, Jan. 1983.

[34] C.-Y. Fong, M. L. Cohen, R. R. L. Zucca, J. Stokes, and Y.-R. Shen, “Wavelength modulation spectrum of copper,” Phys. Rev. Lett., vol. 25, no. 21 pp. 1486-1489, Nov. 1970.

[35] J. Stokes, Y.-R. Shen, Y.-W. Tsang, M. L. Cohen, and C.- Y. Fong, “Wavelength modulation spectra of single crystals of silver and gold,” Phys. Lett., vol. 38A, no. 5, pp. 347-348, Feb. 1972.

[36] J. P. Walter, C.-Y. Fong, and M. L. Cohen, “Electronic charge density of aluminum,” Solid State Commun., vol. 12, no. 5, pp. 303-307, Mar. 1973.

[37] M. Fox, Optical Properties of Solids, USA: Oxford Press Inc., 2001.

[38] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. “Optical properties of
metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, no. 22, pp. 5271-5283 Aug. 1998.

[39] A. D. Rakic. “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt., vol. 34, no. 22, pp. 4755-4767, Aug. 1995.

[40] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York, 2004.

[41] M. Bauer, S. Pawlik, and M. Aeschlimann, “Electron dynamics of aluminum investigated by means of time-resolved photoemission,” Proc. SPIE, Vol. 3272, no. 201, pp. 201-210, Apr. 1998.

[42] R. Matzdorf, A. Gerlach, F. Theilmann, G. Meister, and A. Goldmann, “New lifetime estimates for d-band holes at noblemetal surfaces,” Appl. Phys. B, Vol. 68, no. 3, pp. 393-395, Oct. 1998.

[43] J. R. Chelikowsky, and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, vol. 14, no. 2, pp. 556-582, Jul. 1976.

[44] M.KarthickRaj, “Polarization-insensitive two-dimensional periodic metallic absorbers
in structured metal-insulator-metal configuration for plasmon-enhanced photoelectric conversion,” M.S. thesis, Dept. Optics and Photonics, National Central Univ.,
Taoyuan, Taiwan, 2016.

[45] J. Robertson, “Band offsets of high dielectric constant gate oxides on silicon,” J.
Non-Cryst. Solids, vol. 303, no. 1, pp. 94-100, May 2002.

[46] E. D. Palik, Handbook of Optical Constants of Solids I-III, Elsevier, 1997.

[47] H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochim. Soc., vol. 120, no. 2, pp. 295-300, Feb. 1973.

[48] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A.Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater., vol. 4, no. 11, pp. 1780-1786, Jul. 2016.

[49] E. D. Palik, Handbook of Optical Constants of Solids, USA: Academic Press Inc., 1985.

[50] B. J. Eliasson, “Metal-insulator-metal diodes for solar energy conversion,” Ph.D. dissertation, Dept. Elect. Computer Eng., Univ. Colorado, Boulder, CO, 2001.

[51] Y. Nagao, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “Experimental characterization of the electronic structure of anatase TiO2: Thermopower
modulation,” Appl. Phys. Lett., vol. 97, no. 17, p. 172112, Oct. 2010.

[52] E. B. Saff, and A. B. J. Kuijlaars, “Distributing many points on a sphere,” Math. Intell., vol. 19, no. 1, pp. 5-11, Dec. 1997.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明