博碩士論文 103226068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.15.144.181
姓名 黃竣彬(Chun-Pin Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以有機金屬化學氣相沉積法成長用於深紫外光發光二極體的高品質氮化鋁與氮化硼
(High quality AlN and BN grown by MOCVD for deep UV LEDs)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文描述以有機金屬化學氣相沉積的生長方法提升深紫外光發光二極體關鍵材料的晶格品質。這些方法包括應用於高品質氮化鋁的氣流中斷法和應用於氮化硼窗口層的調降五三比。尤其,氫氣流對於氮化鋁和氮化硼成長是不可或缺的。因為它不僅抑制有機金屬源與氨氣間的氣相預反應,還能去除晶膜表面的點缺陷。
為了在不犧牲晶格品質的前提下,縮短深紫外光發光二極體的磊晶時間,尤其在基板溫度低於1200℃時,前趨源脈衝流動是有效的方法之一。為達成此目標,我們以1180℃的單一基板溫度,並利用脈衝氨氣流的方式,成長厚度達1.5 μm的氮化鋁單晶層。該氮化鋁磊晶層具備平滑表面以及半高寬427弧秒的X光於(102)面繞射峰。
為了近一步縮短氮化鋁層的生長時間,我們使用氨氣與三甲基鋁的雙脈衝氣流,再加上氫氣脈衝蝕刻製程來控制成核島丘晶粒尺寸。在厚度為1.5 μm 的氮化鋁磊晶層表面上,我們得到的方均根粗糙度低達0.25 nm (量測面積: 5x5 μm2)。這些成果顯示: 脈衝氣流的蝕刻效應,能將氮化鋁的磊晶模式從三維的島狀結構,轉變成二維的層狀結構。
本研究的最後一個項目,是要闡明氮化硼層在氮化鋁表面的成長機制。氮化硼層被預期可取代超高電阻率的p型氮化鋁鎵層。根據X光繞射儀、穿透式電子顯微鏡和電子能量損失譜的結果,我們確認氮化硼層從方形到菱形體的晶體轉變,也發現:氮化硼適合在低五三比的氣流環境中成長,因為當五三比降低時,氫氣更能抑制氣相預反應,並催化從方形晶格到菱形晶格的轉變。總的來說,氮化硼的磊晶過程歸納如下:氫氣流抑制氣相預反應 → 方形氮化硼成核層 → 晶體轉變 → 菱形氮化硼連續生長。
摘要(英) This dissertation describes the growth methods of metal-organic chemical vapor deposition (MOCVD) to enhance crystal qualities of the key materials in deep ultraviolet light-emitting diodes (DUV LEDs). The methods include pulsed flow for high-quality AlN buffer and reduced V/III ratio for BN window layer. Specifically, H2 flow is essential for the growth of AlN and BN, as it not only suppresses the gas-phase pre-reaction between metal-organic source and NH3 but also etches the point defects on the epitaxial surface.
To shorten the growth time of DUV LEDs without sacrificing crystal qualities, pulsed-flow of precursors is one of the most effective way, particularly at the substrate temperature below 1200℃. In this regard, a 1.5-μm AlN buffer containing two pulsed-NH3-flow AlN layers was attained at a single substrate temperature of 1180 °C. The AlN buffer exhibits atomically flat surface and the x-ray diffraction (XRD) (102) peak width of 427 arcsec.
To further shorten the AlN-buffer growth, a double-pulsed-flow of NH3 and trimethylaluminum (TMA) and pulsed-H2 etching process were used to control the grain size of nucleation islands. The 1.5-μm-thick AlN epilayer exhibits a root-mean-square surface roughness of 0.25 nm (scanned area: 5x5 μm2). The pulsed etching technique facilitates the crystal transformation of AlN from three-dimensional (3D) nucleation to two-dimensional (2D) layer-by-layer growth.
The last part of this work aims to clarify the growth mechanism of BN on AlN. The BN layer is to replace the resistive p-type AlGaN for DUV LEDs. The lattice transformation of BN from cubic (cBN) to rhombohedral (rBN) structure was confirmed with the results of XRD, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). According to the cross-sectional TEM images, the BN growth favors low V/III ratios so that H2 gas can effectively suppress the gas phase pre-reaction and catalyze the crystal transformation from small cBN nano-islands to rBN monolayer. The growth of BN is summarized as follows: H2 flow suppressing gas-phase pre-reaction → cBN nucleation layers → crystal transformation → rBN continuous growth.
關鍵字(中) ★ 氮化鋁
★ 氮化硼
★ 有機金屬氣相沉積法
關鍵字(英) ★ AlN
★ BN
★ MOCVD
論文目次 ABSTRACT i
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction and motivation 1
1.1 Introduction 1
1.2 The effect of dislocations from the AlGaN to multi-quantum wells structures 3
1.3 Chemical reaction pathways of AlN growth 4
1.4 P-type sp2-BN conductor layer 6
1.5 Motivation and dissertation overview 8
1.6 Publications 9

Chapter 2 AlN grown at a single substrate temperature with pulsed NH3 flow 10
2.1 Introduction 10
2.2 Experimental 11
2.3 Results 13
2.4 Conclusions 26

Chapter 3 A pulsed H2 etching condition inserted to the AlN growth process 27
3.1 Introduction 27
3.2 Experimental 28
3.3 Results 29
3.4 Conclusions 40
References
Chapter 4 Two dimensional rhombohedral BN grown on AlN template: The effect of V/III ratio on the crystal transformation from cBN to rBN 41
4.1 Introduction 41
4.2 Experimental 43
4.3 Results 44
4.4 Conclusions 57
References
Chapter 5 Summaries and future works 58
5.1 Summaries 58
5.2 Future works 60

Reference 61
參考文獻 1. M. A. d. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, ”Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations”, PRL 116, 027401, Jan (2016).
2. D. Li, K. Jiang, X. J. Sun, and C. Guo, ”AlGaN photonics: recent advances in materials and ultraviolet devices”, AOP 10, 43, Mar (2018).
3. C. Z. Y. Mi, L. Wang, J. Jin, Z. B. Hao, Y. Luo, C. Z. Sun, Y. J. Han, B. Xiong, J. Wang, and H. T. Li, ”Estimating internal quantum efficiency of light-emitting diodes from current– voltage curves”, Appl. Phys. Express 12, 032002, Feb (2019).
4. P. Batoni, J. G. Pagan, T. R. Harris, O. Lawal, K. G. Linden, C. Bartow, and S. Beck, ”Early Adoption of UV-C Light Emitting Diode Technology for Water Disinfection”, IUVA NEWS 14, 18, Fall (2012).
5. I. Bryan, Z. Bryan, S. Washiyama, P. Reddy, B. Gaddy, B.Sarkar, M. H. Breckenridge, Q. Guo, M. Bobea, J. Tweedie, S. Mita, D. Irving, R. Collazo, and Z. Sitar, ”Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD”, Appl. Phys. Lett. 112, 062102, Nov (2018).
6. K. Ban, J. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, ”Internal Quantum Efficiency of Whole-Composition-Range AlGaN Multiquantum Wells”, APEX 4, 052101, Apr (2011).
7. K. Oriya, ”Light scattering from defects in crystals: scattering by dislocations”, Philosophimcaagl Azinbe 64, 425, Dec (1991).
8. H. Chen, J. G. Zhou, H. Q. Fu, X. Q. Huang, and Y. J. Zhao, ”Study of Crystalline Defect Induced Optical Scattering Loss inside AlN Waveguides in UV-Visible Spectral Wavelengths”, CLEO, JTh2A.66, San Jose, California United States, May (2019).
9. Y. Inagaki, and T. Kozawa, “Chemical reaction pathways for MOVPE growth of aluminum nitride”, ECS J. Solid State Sci. Technol. 5, 73, Dec (2016).
10. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, ”Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy”, JJAP 46, 1458, Apr (2007).
11. Y. Kumagai, K. Akiyama, R. Togashi, H. Murakamia, M. Takeuchi, Toru Kinoshitae, K. Takada, Y. Aoyagi, and A. Koukitu, ”Polarity dependence of AlN {0001} decomposition in flowing H2”, J. Cryst. Growth 305, 366, Apr (2007).
12. H. Koga, Y. Nakamura, S. Watanabe, and T. Yoshida, ”Molecular dynamics study of deposition mechanism of cubic boron nitride”, Sci. Technol. Adv. Mater. 2, 349, Jun (2001).
13. R. Y. Tay, X. Wang, S. H. Tsang, G. C. Loh, R. S. Singh, H. Li, G. Mallick, and E. H. T. Teo, ”A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film”, J. Mater. Chem. C 2, 1650, Nov (2014).
14. T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, ”Charge carrier transport properties in layer structured hexagonal boron nitride”, AIP Advances 4, 107126, Oct (2014).
15. G. Cassabois, P. Valvin, and B. Gil, ”Hexagonal boron nitride is an indirect bandgap semiconductor”, Nat. Photonics 10, 262, Jan (2016).
16. K. Ahmed, R. Dahal, A. Weltz, J. J.-Q. Lu, Y. Danon, and I. B. Bhat, ”Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire”, Mater. Res. Express 4, 015007, Jan (2017).
17. T. Ouyang, Y. P. Chen, Y. Xie, K. Yang, Z. G. Bao, and J. X. Zhong, ”Thermal transport in hexagonal boron nitride nanoribbons”, J. Nanotechnol. 21, 245701, May (2010).
18. H. X. Jiang and J. Y. Lin, ”Review—Hexagonal Boron Nitride Epilayers: Growth, Optical Properties and Device Applications”, ECS J. Solid State Sci. Technol. 6, Q3012, Sep (2017).
19. H. Long, S. Z. Li, X. M. Mo, H. N. Wang, H. H. Huang, Z. Chen, Y. P. Liu, and G. J. Fang, ”Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes”, Appl. Phys. Lett. 103, 123504, Sep (2013).
20. G. D. Hao, M. Taniguchi, and S. Inoue, ”Highly Deep Ultraviolet–Transparent h-BN Film Deposited on an Al0.7Ga0.3N Template by Low-Temperature Radio-Frequency Sputtering”, Materials 12, 4046, Dec (2019).

21. C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, ”Coupling of excitons and defect states in boron-nitride nanostructures”, Phys. Rev. B 83, 144115, Apr (2011).
22. M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, ”Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys”, Appl. Phys. Lett. 86, 092108, Feb (2005).
23. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, ”Mg acceptor level in AlN probed by deep ultraviolet photoluminescence”, Appl. Phys. Lett. 83, 878, Jul (2003).
24. K. X. Dong, D. J. Chen, J. P. Shi, B. Liu, H. Lua, R. Zhang, and Y. D. Zheng, ”Characteristics of deep ultraviolet AlGaN-based light emitting diodes with p-hBN layer”, Physica E 75, 52, Aug (2016).
25. J. Song, D. Chen, and J. Han, ”Understanding of the mechanism of pulsed NH3 growth in metalorganic chemical vapor deposition”, J. Cryst. Growth 415, 127, Nov (2015).
26. J. C. Yan, J. X. Wang, Y. Zhang, P. P. Cong, L. L. Sun, Y. D. Tian, C. Zhao, and J. M. Li, ”AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE”, J. Cryst. Growth 414, 254, Oct (2015).
27. S. C. Chen, Y. Li, Y. Y. Ding, S. L. Li, M. Zhang, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, ”Defect reduction in AlN epilayers grown by MOCVD via intermediate-temperature interlayers”, J. Electron. Mater. 44, 217, Nov (2015).

28. D. G. Zhao, D. S. Jiang, L. L. Wu, L. C. Le, L. Li, P. Chen, Z. S. Liu, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, ”Effect of dual buffer layer structure on the epitaxial growth of AlN on sapphire”, J. Alloys Compd. 544, 94, Aug (2012).
29. H. L. Wu, W. Zhao, C. G. He, K. Zhang, L. F. He, and Z. T. Chen, ”Growth of high quality AlN/sapphire templates with high growth rate using a medium-temperature layer”, Superlattices Microstruct. 125, 343, Dec (2019).
30. R. G. Banal, M. Funato, and Y. Kawakami, ”Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy”, Appl. Phys. Lett. 92, 241905, Jun (2008).
31. J. Song, D. Chen, and J. Han, ”Understanding of the mechanism of pulsed NH3 growth in metalorganic chemical vapor deposition”, J. Cryst. Growth 415, 127, Jan (2015).
32. Q. Yang, L. Pan, Z. Li, D. Zhang, and X. Dong, ”Mechanism of defects formation and surface smoothening of AlN films grown on Si(111) by an NH3 pulsed-flow method”, Superlattices Microstruct. 99, 94, Nov (2016).
33. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, ”231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire”, Appl. Phys. Lett. 91, 071901, Aug (2007).


34. Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, C. Wetzel, E. F. Schubert, W. Liu, X. Li, and J. A. Smart, ”Very high quality AlN grown on (0001) sapphire by metal-organic vapor phase epitaxy”, Appl. Phys. Lett. 89, 103106, Sep (2006).
35. Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U. K. Mishra, S. P. Denbaars, and S. Nakamura, ”High quality AlN grown on SiC by metal organic chemical vapor deposition”, Appl. Phys. Lett. 93, 191906, Nov (2008).
36. K. Nakamura, A. Hirako, and K. Ohkawa, ”Analysis of pulsed injection of precursors in AlN-MOVPE growth by computational fluid simulation”, Phys. Status Solidi C 7, 2268, May (2010).
37. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, ”High-temperature metal-organic vapor phase Epitaxial growth of AlN on Sapphire by multi transition growth mode method varying V/III ratio”, Jpn. J. Appl. Phys. 45, 8639, Nov (2006).
38. T. Morishita, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, ”Homoepitaxial growth of AlN layers on freestanding AlN substrate by metalorganic vapor phase epitaxy”, J. Cryst. Growth 390, 46, Dec (2014).
39. F. Brunner, H. Protzmann, M. Heuken, A. Knauer, M. Weyers, and M. Kneiss, ”High-temperature growth of AlN in a production scale 11 × 2′ MOVPE reactor”, Phys. Status Solidi C 5, 1799, Apr (2008).
40. M. Imura, H. Sugimura, N. Okada, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, and A. Bandoh, ”Impact of high-temperature growth by metal-organic vapor phase epitaxy on microstructure of AlN on 6H-SiC substrates”, J. Cryst. Growth 310, 2308, Dec (2008).
41. T. G. Mihopoulos, V. Gupta, and K. F. Jensen, ”A reaction-transport model for AlGaN MOVPE growth”, J. Cryst. Growth 195, 733, Dec (1998).
42. D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, ”GaN decomposition in H2 and N2 at MOVPE temperatures and pressures”, J. Cryst. Growth 223, 466, Mar (2001).
43. B. Heying, X. H. Wu, S. Keller, Y. Li, and D. Kapolnek, ”Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. 68, 643, Nov (1996).
44. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, ”Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis x-ray diffractometry”, Philos. Mag. A 77, 1013, Aug (1998).
45. V. Srikant, J. S. Speck, and D. R. Clarke, ”Mosaic structure in epitaxial thin films having large lattice mismatch”, J. Appl. Phys. 82, 4286, Jul (1997).


46. B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and David Weyburne, ”Correlation between optoelectronic and structural properties and epilayer thickness of AlN”, Appl. Phys. Lett. 90, 241101, Jun (2007).
47. S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, ”Effect of threading dislocations on the Bragg peak widths of GaN, AlGaN, and AlN heterolayers”, Appl. Phys. Lett. 86, 241904, Jun (2005).
48. D. W. Hogan and D. J. Dyson, ”Angles between planes in the hexagonal and tetragonal crystal systems”, Micron 2, 59, May (1970).
49. X.-H. Li, S. Wang, H. G. Xie, Y. O. Wei, T. T. Kao, Md. M. Satter, S. C. Shen, P. D. Yoder, T. Detchprohm, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, ”Growth of high-quality AlN layers on sapphire substrates at relatively low temperatures by metalorganic chemical vapor deposition”, Phys. Status Solidi B 252, 1089, Dec (2015).
50. D. M. Follstaedt, N. A. Missert, D. D. Koleske, C. C. Mitchell, and K. C. Cross, ”Plan-view image contrast of dislocations in GaN”, Appl. Phys. Lett. 83, 4797, Dec (2003).
51. K. Uehara, Y. Aota, S. Kameda, H. Nakase, and K. Tsubouchi, ”Low propagation loss of atomically-flat surface AlN with low dislocation density for 5-ghz band saw devices”, IEEE Int. Ultrason. Symp. 4, 455, Sep (2005).


52. L. Lu, Z. Y. Gao, B. Shen, , F. J. Xu, S. Huang, Z. L. Miao, Y. Hao, Z. J. Yang, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, ”Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition”, J. Appl. Phys. 104, 123525, Dec (2008).
53. H. Miyake, G. Nishio, S. Suzuki, K. Hiramatsu, H. Fukuyama, J. Kaur, and N. Kuwano, ”Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire”, Appl. Phys. Express 9, 025501, Jan (2016).
54. H. Fukuyama, H. Miyake, G. Nishio, S. Suzuki, and K. Hiramatsu, ”Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle”, Jpn. J. Appl. Phys. 55, 05FL02, Apr (2016).
55. H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, ”Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing”, J. Cryst. Growth 456, 155, Aug (2016).
56. C. Y. Huang, P. Y. Wu, K. S. Chang, Y. H. Lin, W. C. Peng, Y. Y. Chang, J. P. Li, H. W. Yen, Y. C. S. Wu, H. Miyake, and H. C. Kuo, ”High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes”, AIP Adv. 7, 055110, May (2017).
57. R. R. Reeber and K. Wang, ”Lattice Parameters and Thermal Expansion of Important Semiconductors and Their Substrates”, Mater. Res. Soc. Symp. 622, T6.35.1, Mar (2000).

58. N. Okada, N. Katoa, S. Satoa, T. Sumiia, T. Nagaia, N. Fujimotoa, M. Imuraa, K. Balakrishnana, M. Iwayaa, S. Kamiyamaa, H. Amanoa, I. Akasakia, H. Maruyamab, T. Takagib, T. Norob, and A. Bandohc, ”Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification”, J. Cryst. Growth 298, 349, Nov (2007).
59. U. Panyukova, H. Suzuki, R. Togashi, H. Murakami, Y. Kumagai, and A. Koukitu, ”Study of the Decomposition Processes of (0001) AlN in a Hydrogen Atmosphere”, Jpn. J. Appl. Phys. 46, L1114, Nov (2007).
60. J. Bai, M. Dudley, W. H. Sun, H. M. Wang, and M. Asif Khan, ”Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification”, Appl. Phys. Lett. 88, 051903, Jan (2006).
61. X. Yang, S. Nitta, M. Pristovsek, Y. Liu, K. Nagamatsu, M. Kushimoto, Y. Honda, and H. Amano, ”Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy”, Appl. Phys. Express 11, 051002, Apr (2018).
62. M. Kuball, F. Demangeot, J. Frandon, M. A. Renucci, H. Sands, D. N. Batchelder, S. Clur, and O. Briot Citation, ”Degradation of AlGaN during high-temperature annealing monitored by ultraviolet Raman scattering”, Appl. Phys. Lett. 74, 549, Nov (1999).
63. V. L. Solozhenko, V. Z. Turkevich, and W, B. Holzapfel, ”Refined Phase Diagram of Boron Nitride”, J. Phys. Chem. B 103, 2903, Mar (1999).
64. V. L. Solozhenko and V. Z. Turkevich, ”hBN ↔ cBN equilibrium line calculated from experimental data on the cBN-to-hBN transformation to 1.4 GPa”, High Press Res 16, 179, Aug (1999).
65. B. Xu, M. Lv, X. H. Fan, W. Zhang, Y. Xu, and T. G. Zhai, ”Lattice Parameters of Hexagonal and Cubic Boron Nitrides at High Temperature and High Pressure”, Integr. Ferroelectr. 162, 85, Aug (2015).
66. I. A. Petrusha, ”Features of a cBN-to-graphite-like BN phase transformation under pressure”, Diam Relat Mater 9, 1487, Aug (2000).
67. H. Sachdev, R. Haubner and H. Nöth. Lux, ”Investigation of the c-BN/h-BN phase transformation at normal pressure”, Diam Relat Mater 6, 286, Mar (1997).
68. Pui K. Lam, ”Phase diagram, cluster stability, and growth mechanism of boron nitride”, AIRAPT-17, WeT1C, Honolulu, Hawaii., USA, Jul (1999).
69. M. Chubarov, H. Pedersen, H. Högberg, S. Filippov, J. A. A. Engelbrecht, J. O′Connel, and A. Henry, ”Boron nitride: A new photonic material”, Physica B 439, 29, Nov (2014).
70. L. Souqui, H. Pedersen, and H. Högberg, ”Thermal chemical vapor deposition of epitaxial rhombohedral boron nitride from trimethylboron and ammonia”, J. Vac. Sci. Technol. A 37, 020603-1, Feb (2019).
71. C. B. Samantaray and R. N. Singh, ”Review of synthesis and properties of cubic boron nitride (c-BN) thin films”, Int. Mater. Rev. 50, 313, Jul (2005).
72. M. Deura, K. Kutsukake, Y. Ohno, I. Yonenaga, and T. Taniguchi, ”Mechanical Properties of Cubic-BN(111) Bulk Single Crystal Evaluated by Nanoindentation”, Phys. Status Solidi B 255, 1700473, Dec ( 2017).
73. Weida Qian, Marek Skowronski, and Greg S. Rohrer, ”Structural Defects and Their Relationship to Nucleation of GaN Thin Films”, Mat. Res. Soc. Symp. Proc. 423, 475, Feb (1996).
74. M. Snure, Q. Paduano, and A. Kiefer, ”Effect of surface nitridation on the epitaxial growth of few-layer sp2BN”, J. Cryst. Growth 436, 16, Dec (2016).
75. D. Chugh, J. Wong-Leung1, L. Li, M. Lysevych, H. H. Tan, and C. Jagadish, ”Flow modulation epitaxy of hexagonal boron nitride”, 2D Mater. 5, 045018, Aug (2018).
76. M. Chubarov, H. Pedersen, H. Högberg, J. Jensen, and A. Henry, ”Growth of High Quality Epitaxial Rhombohedral Boron Nitride”, Cryst. Growth Des. 12, 3215, May (2012).
77. X. Z. Du, J. Li, J. Y. Lin, and H. X. Jiang, ”The origins of near band-edge transitions in hexagonal boron nitride epilayers”, Appl. Phys. Lett. 108, 052106, Feb (2016).
78. D. Y. Kim, N. Han, H. K. Jeong, J. W. Kim, S. Y. Hwang, K. Song, S. Y. Choi, and J. K. Kim, ”Pressure-Dependent Growth of Wafer-Scale Few-layer h‑BN by Metal−Organic Chemical Vapor Deposition”, Cryst. Growth Des. 17, 2569, Mar (2017).


79. D. Y. Kim, N. Han, H. Y. Jeong, J. W. Kim, S. Y. Hwang, and J. K. Kim, ”Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition”, AIP Advances 7, 045116, Apr (2017).
80. L. F. Wang, B. Wu, L. L. Jiang, J. S. Chen, Y. T. Li, W. Guo, P. G. Hu, and Y. Q. Liu, ”Growth and Etching of Monolayer Hexagonal Boron Nitride”, Adv. Mater. 27, 4858, Jul (2015).
81. Q. K. Wu, J. H. Park, S. W. Park, S. J. Jung, H. S. Suh, N. J. Park, W. Wongwiriyapan, S. J. Lee, Y. H. Lee, and Y. J. Song, ”Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains”, Sci Rep. 5, 16159, Nov (2015).
82. A. Rice, A. Allerman, M. Crawford, T. Beechem, T. Ohta, C. Spataru, J. Figiel, M. Smith, ”Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride”, J. Cryst. Growth 485, 90, Dec (2018).
83. J. Widany, T. Frauenheim, and W, R. L. Lambrecht, ”Investigation of the stability of the hexagonal-cubic boron nitride prism interface”, J. Muter. Chem. 6, 899, Dec (1996).
84. S. Guerini, R. H. Miwa, T. M. Schmidt, and P. Piquini, ”Theoretical investigation of the hBN(0001)/cBN(111) interface”, Diam Relat Mater 17, 1963, May (2008).
85. P. Widmayer, H.-G. Boyen, P. Ziemann, P. Reinke, and P. Oelhafen, ”Electron spectroscopy on boron nitride thin films: Comparison of near-surface to bulk electronic properties”, Phys. Rev. B 59, 5253, Feb (1999).
86. Q. Li, L. D. Marks, Y. Lifshitz, S. T. Lee, and I. Bello, ”Controlling the nucleation environment of c-BN films and their related properties”, Phys. Rev. B 65, 045415-1, Jan (2002).
87. J. B. MacNaughton, A. Moewes, R. G. Wilks, X. T. Zhou, T. K. Sham, T. Taniguchi, K. Watanabe, C. Y. Chan, W. J. Zhang, I. Bello, S. T. Lee, and H. Hofsäss, ”Electronic structure of boron nitride single crystals and films”, Phys. Rev. B 72, 195113, Nov (2005).
88. H. Henck, D. Pierucci, Z. B. Aziza, M. G. Silly, B. Gil, F. Sirotti, G. Cassabois, and A. Ouerghi, ”Stacking fault and defects in single domain multilayered hexagonal boron nitride”, Appl. Phys. Lett. 110, 023101, Jan (2017).
89. R F Egerton, ”Electron energy-loss spectroscopy in the TEM”, Rep. Prog. Phys. 72, 016502, Nov (2009).
90. N. L. McDougall, J. G. Partridge, D. W. M. Lau, P. Reineck, B. C. Gibson, T. Ohshima, and D. G. McCulloch, ”Theoretical and experimental investigation of point defects in cubic boron nitride”, J. Nanomater. 2, 1545, Jan (2017).
91. N. L. McDougall, J. G. Partridge, R. J. Nicholls, S. P. Russo, and D. G. McCulloch, ”Influence of point defects on the near edge structure of hexagonal boron nitride”, Phys. Rev. B 96, 144106, Oct (2017).
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2020-5-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明