博碩士論文 103226069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.190.159.10
姓名 李克辰(Ko-Chen Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
(The effect of ZnO thermal decomposition on the nanoheteroepitaxy of GaN on Si)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討★ 氮化物表面電漿生醫感測之理論分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討論氧化鋅奈米柱在高溫、含氫環境下的穩定性。氧化鋅奈米柱可作為氮化鎵在矽基板上的磊晶緩衝層,能有效減緩氮化鎵與矽基板之間的晶格應力,且奈米柱可用低溫、大面積的水熱法生長而成。此外,氧化鋅奈米柱的鋅在高溫製程時會擴散至氮化鎵,產生氮化鎵的鋅摻雜,形成p型氮化鎵,我們希望以此p-side-down的LED結構,來提升量子井的發光效率。
然而,在有機金屬化學氣相的磊晶過程中,基板溫度通常超過1000 oC,且需要含氫氣的環境,這些條件會對氧化鋅產生蝕刻的作用,影響氧化鋅的晶格結構,因此氧化鋅的穩定性對氮化鎵的品質有關鍵性的影響。本研究使用快速熱退火爐管,觀察氧化鋅在高溫、不同氫含量下(空氣、真空及氮氣)的反應,希望能藉此了解氧化鋅奈米柱在氮化鎵磊晶過程中的結構變化。
根據SEM及XRD的觀察,在空氣中的氧化鋅奈米柱的耐熱程度最低,在900 oC時就會產生形變,且與相鄰的奈米柱接合,無法保持住本身奈米柱的型態,當溫度到達1000 oC時,奈米柱即完全塌陷;真空環境下的氧化鋅奈米柱則是在900 oC時產生些微的形變,但還能保持奈米柱的原始型態;氮氣環境下的氧化鋅奈米柱在1000 oC時才開始發生形變。這樣的實驗結果可以確認氧化鋅奈米柱在高溫下的不穩定性,除了氧化鋅的熱分解,在含有氫氣的環境下,還會有氫氣蝕刻的影響,造成氧化鋅奈米柱的耐熱程度更低。
摘要(英) In this study, we investigated the stability of ZnO nanorods at high temperature and hydrogen environments. ZnO nanorods are employed as the buffer structure for the growth of GaN on silicon substrates via metal-organic chemical vapor deposition (MOCVD). The nanorods can be attained with a hydrothermal synthesis, which is a low-temperature and wafer-scale process. GaN grown on ZnO is inherently p-type, which is due to the diffusion of Zn ions. For LEDs, the inherent p-type GaN can benefit the internal quantum efficiency by forming the p-side-down structure, which reverses the polarization-induced field and increases carrier injection efficiency.
However, during MOCVD growth, the substrate temperature usually exceeds 1000 oC, and a hydrogen-containing atmosphere is required, and these conditions can lead to thermal decomposition and H2 back-etching of ZnO nanorods, sacrificing the crystal qualities of GaN-on-Si. To understand the etching and decomposition process, rapid thermal annealing (RTA) with different hydrogen contents (air, vacuum, and nitrogen) was used to treat ZnO nanorods.
According to the observations with scanning electron microscopy and X-ray diffraction, it is found that the ZnO nanorods in air start to deform and decompose at 900 oC, and completely collapse at 1000 o C. In the vacuum environment, the nanorods slightly deform at 900 oC, but the original “rod” shape can be maintained. The ZnO nanorods are most durable in nitrogen, and the geometry is well maintained until the temperature reaches 1000 oC. These results confirm that, in addition to thermal decomposition, ZnO nanorods suffer H2 back-etching in the presence of high-temperature hydrogen, which should be closely cared during the growth of GaN-on-Si. ?
關鍵字(中) ★ 氮化鎵
★ 氧化鋅
★ 奈米異質磊晶術
★ 熱分解
關鍵字(英) ★ GaN
★ ZnO
★ nanoheteroepitaxy
★ GaN on Si
論文目次 目錄
論 文 摘 要 i

ABSTRACT ii

誌謝 iv

目錄 v

圖目錄 vii

表目錄 x

英文名詞縮寫對照表 xi

第一章、簡介 - 1 -

1.1 發光二極體(LED)基本介紹 - 1 -

1.2研究動機 - 6 -

1.2.1 LED的效率瓶頸 - 6 -

1.2.2 矽基板與p-side-down 結構的優勢 - 7 -

1.2.3 氧化鋅奈米異質磊晶術與其技術障礙 - 11 -

1.3章節架構 - 16 -



第二章、儀器介紹與試片製程分析 - 17 -

2.1 p-side-down LED的效率模擬設定 - 17 -

2.2實驗流程 - 20 -

2.2.1氧化鋅奈米柱的製備. - 21 -

2.2.2氧化鋅奈米柱在高溫下的影響 - 26 -

第三章、結構分析與討論 - 30 -

3.1退火溫度與時間對氧化鋅奈米柱之影響 - 30 -

3.2氧化鋅奈米柱經過快速熱退火之影響 - 40 -

3.2.1掃描式電子顯微鏡(SEM)之分析 - 41–

3.2.2 X光繞射(XRD)之分析 - 48 -

3.3 有機金屬化學氣相沉積法(MOCVD) 成長磊晶層 - 50 -

第四章、結論與未來發展 - 54 -

4.1 結論 - 54 -

4.2 未來發展 - 55 -

參考文獻 - 57 -
?
參考文獻 [1] 網路資料:發光二極體發展歷史與半導體概念,
取自http://www.wunan.com.tw/www2/download/preview/5D91.PDF 
[2] 網路資料:維基百科,發光二極體,
取自 https://zh.wikipedia.org/wiki/%E7%99%BC%E5%85%89%E4%BA%8C%E6%A5%B5%E7%AE%A1 
[3] H. J. Round, “A note on carborundum,” Electrical world., Vol 49, pp.309-310, 1907.
[4] G. Destriau, “Recherches sur les scintillations des sulfures de zinc aux rayons.” Journal de Chemie Physique. Vol 33, S.pp. 587–6251936,.
[5] H.Welker, “Uber neue halbleitende Verbindungen” Zeitschrift fur Naturforschung A, Vol 7, Issue 11, pp.744-749, 1952.
[6] E. Weisshaar, H.Welker, “Magnetische Sperrschichten in Germanium” Zeitschrift fur Naturforschung A, Vol 8, Issue 11, pp.681-686, 1953.
[7] Nick Holonyak Jr. and S.F. Bevacqua1, “Coherent (visible) light emission from Ga(As1-xPx) junctions” Appl. Phys. Lett. Vol. 1, pp. 82-83, 1962.
[8] C. J. Nuese, et al “Optimization of Electroluminescent Efficiencies for Vapor?Grown GaAs1???x?P?x Diodes” J. Electrochem., Soc. Vol 116, pp. 248-253, 1969
[9] H. Amano, et al. “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer” Appl. Phys. Lett., Vol. 48, pp.353, 1986
[10] Hiroshi Amano, et al. “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy
Electron Beam Irradiation (LEEBI)” Jpn. J. Appl. Phys., Vol 28, pp. L2112-L2114, 1989.
[11] S. Nakamura, et al, “Thermal annealing effects on p-type Mg-doped GaN films,”
Jpn. J. Appl. Phys., Vol 31, pp.139-142, 1992.
[12] Shuji Nakamura, et al, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes” Jpn.
J. Appl. Phys., Vol 35, pp. L74-L76, 1996.
[13] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N.Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G.Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach,S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T.Trottier, and J. J. Wierer, “High power LEDs – Technology status and market applications,” Physica Status Solidi A-Applied Research, Vol. 194, pp. 380, 2002.
[14] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press,
Cambridge),2006.
[15] 徐瑞偉,「以奈米異質磊晶術在矽基板上成長半極性氮化銦鎵量子井」,國立中央大學,碩士論文,民國103年。
[16] 李朱育,李敏鴻,李勝偉,柯文政,段生振,陳念波,「圖解光電半導體元件」,五南圖書出版股份有限公司,2014年。
[17] 網路資料:賴芳儀、蔡芳儒、鄭柏孝、郭浩中,提升發光二極體亮度之方法(下)
取自 http://www.pida.org.tw/optolink/optolink_pdf/97037411.pdf
[18] 網路資料:LED( Light Emitting Diode ) 發光二極體
取自 http://www.mae.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf
[19] 網路資料: 郭子菱,矽基 LED 量產在即,藍寶石基板價格戰醞釀開打,2012 年9 月 6 號,取自 http://blog.xuite.net/frankfang86/twblog
[20] 網路資料︰MoneyDJ 理財網,LED 藍寶石基板
取自 http://www.moneydj.com/KMDJ/Wiki/WikiHome.aspx
[21] 吳承翰,「成長於氧化鋅緩衝層之自發性P型氮化鎵」,國立中央大學,碩士論文,民國104年
[22] 網路資料:反置磊晶提高LED發光效率
取自http://www.compoundsemiconductortaiwan.net/PDF/2012/020304/CS_Features5.pdf
[23] Y. Ohba, A. Hatano, ” A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition” Journal of Crystal Growth., Vol 145. Pp. 214-218, 1994.
[24] Pearton S J, Norton D P and Ren F “The Promise and Perils of Wide-Bandgap Semiconductor Nanowires for Sensing, Electronic, and Photonic Applications.”
Small Vol 3, pp. 1144-1150, 2007.

[25] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, “Nanoheteroepitaxial growth of GaN on Si nanopillar arrays”, J. Appl. Phys., Vol 97, pp. 124308 , 2005.
[26] D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics
grown on Si”, Rep. Prog. Phys., Vol 76, pp. 106501, 2013.
[27] G. T. Chen, J. I. Chyi, C. H. Chan, C. H. Hou, C. C. Chen, and M. N. Chang, “Crack-free GaN grown on AlGaN∕(111)SiAlGaN∕(111)Si micropillar array fabricated by polystyrene microsphere lithography“ Appl. Phys. Lett. Vol 91, pp. 261910, 2007.
[28] J. W. Hus, C. C. Chen, M. J. Lee, H. H. Liu, J. I. Chyi, M. R. S. Huang, C. P. Liu, T. C. Wei, J. H. He and K. Y. Lai, “Bottom-Up Nano-heteroepitaxy of Wafer-Scale Semipolar
GaN on (001) Si” Adv. Mater., Vol 27, pp. 4845–4850, 2015.
[29] M. L. Reed, E. D. Readinger, Shen,Wraback, Syrkin, Usikov, V. Kovalenkov,2 and V. A. Dmitriev, ” n-InGaN/p-GaN single heterostructure light emitting diode with p-side down”, Appl. Phys. Lett., Vol 93,pp. 133505, 2008.
[30] H. Wang, Z. P. Zhang, X. N. Wang, Q. Mo, Y. Wang, J. H. Zhu, H. B. Wang, F. J. Yang, Y. Jiang, “Selective Growth of Vertical?aligned ZnO Nanorod Arrays on Si Substrate by Catalyst?free Thermal Evaporation”, Nanoscale Res. Lett., vol 3, pp.309, 2008.
[31] 網路資料:俊尚科技股份有限公司,物理氣相沉積 – Sputtering Deposition
取自 http://www.junsun.com.tw/index.php/zh/2012-04-12-01-17-00/2012-04-12-01-19-01/physical-vapor-deposition.html?start=1
[32] Francisco Solis-Pomar, Eduardo Martinez, Manuel F Melendrez and Eduardo Perez-Tijerina,” Growth of vertically aligned ZnO nanorods using textured ZnO films”, Nanoscale Res. Lett., Vol 6, pp. 524 ,2011.
[33] N. Li, “GaN on ZnO: A NEW APPROACH TO SOLID STATE LIGHTING”, Georgia Institute of
Technology, 2009 .
[34] N. Li, E.H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson,“Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337, pp.63370Z?1, 2006
[35] Shih-Wei Chen, Jenn-Ming Wu,” Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method”, Acta Materialia., Vol 59, pp. 841–847, 2011.
[36] H. Ghayour, H. R. Rezaie, S. Mirdamadi, A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”, Vaccum, Vol 86, pp.101?105, 2011.
[37] 陳建嘉,「矽基板上的氮化鎵奈米異質磊晶術」,國立中央大學,碩士論文,民國102年
[38] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions “ Chem. Mater., Vol 17, pp. 1001-1006, 2005.

[39] M. Grunze, W. Hirschwald, and D. Hofmann, ”Zinc OXIDE: SURFACE STRUCTURE, STABILITY, AND MECHANISMS OF SURFACE REACTIONS” J. Cryst. Growth Vol 52, pp. 241-249 1981
[40] 網路資料:維基百科,有機金屬化學氣相沉積法,2015 年 5 月 9 號 最後修訂
取自 https://zh.wikipedia.org/wiki/%E6%9C%89%E6%9C%BA%E9%87%91%E5%B1%9E%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF%E6%B3%95
[41] Kui Wu, Tongbo Wei, Haiyang Zheng, Ding Lan, Xuecheng Wei, Qiang Hu, Hongxi Lu, Junxi Wang, Yi Luo, and Jinmin Li, “Fabrication and optical characteristics of phosphor-free InGaN nanopyramid white light emitting diodes by nanospherical-lens photolithography”.
J. Appl. Phys. ,Vol 115, pp. 123101, 2014.
[42] 網路資料:李孟恩 助理教授,半導體發光元件講義,基礎科學教育改進計畫,高雄師範大學物理學系,取自https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0ahUKEwjp5su24NPSAhWDG5QKHWgIBxI4ChAWCBswAQ&url=http%3A%2F%2Fpromotion.ep.nctu.edu.tw%2Fteaches%2F92%2FnknuA%2Fnknu2.doc&usg=AFQjCNEwHruft53Do2DOevrq8KBAi1yGIg

指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2017-3-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明