博碩士論文 103226602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.129.13.201
姓名 馬林甘(Muthuramalingam Karthickraj)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
(Polarization-insensitive two-dimensional periodic metallic absorbers in structured metal-insulator-metal con guration for plasmon-enhanced photoelectric conversion)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究★ 光波至混合電漿波導極化模態轉換器
★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
★ 多原子層鋁膜中電子與聲子間之散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對以數種尺寸之奈米六角柱週期陣列置於金屬-介電質-金屬結構(metal-
insulator-metal, MIM)所形成之新式金屬吸收體,其在可見光光譜範圍內之寬頻入射
電磁波吸收及電漿子(plasmon)增強之光電轉換進行相關之探討。於反射頻譜中觀察
到,以金為材料之單一六角柱其分別置於二氧化矽(SiO2)-金與二氧化矽-銀(Ag)結構之
上時,其共振波長(resonance wavelength, λres)隨正六角柱邊長增加而近乎線性紅移。
金奈米結構-二氧化矽-金之吸收體於入射自由波長(free space wavelength, λ0)大於500
nm所產生之寬頻入射電磁波吸收主要源自於底層金膜之材料吸收。數值模擬結果顯示
該吸收體於垂直入射下具有與入射電磁光偏振(polarization)不相依之特性,且其吸收頻
譜(λ0 = [300, 1100] nm)於入射角(incidence angle)小於40◦之範圍內幾乎恆定。對於垂直
入射之橫向磁場(transverse magnetic, TM)電磁波,金-二氧化矽-金與金-二氧化矽-銀吸
收體之波長平均(λ0 = [400, 700] nm)之總吸收率(absorptance)分別為91.63%及82.31%。
此外,與以金為底層金屬膜之吸收體相比,於波長範圍λ0 = [400, 550] nm內,改以銀
為底層金屬膜促使上層金六角柱之吸收率增加2.5倍,其主要源自於反射波增益之局
域性表面電漿子(reflected wave-enhanced localized surface plasmons)與間隙電漿子(gap
plasmon)共振。
於多層結構之鋁(Al)-二氧化鈦(TiO2)-銀之吸收體,電漿子增強之光電轉換效應主
要產生於六角柱之邊緣以及側壁,同時可於六角柱間之中層鋁金屬膜內所產生。對於
最佳化之結構,於可見光範圍內對TM電磁波之吸收率其大於60%之頻寬約為293 nm。
於本研究中,透過電子束微影(electron beam lithography)製作最佳化之具奈米六角柱之
鋁-二氧化鈦-銀之吸收體並針對其外部量子效率(external quantum efficiency, EQE)進行
量測。透過量測該元件於入射光波長為633 nm之光激發下所產生之光電流,可推得該
元件之外部量子效率與響應率(responsivity)分別為0.0568%與0.2899mA/W。
摘要(英) In this research, novel metallic absorbers with multi-sized nanohexagons arranged peri-
odically in metal-insulator-metal (MIM) configuration for broadband optical absorption
and plasmon-enhanced photoelectric conversion at visible frequencies are numerically and
experimentally explored. The resonance wavelength (λres) of a single gold (Au) hexagon
supported by silica film on Au or silver (Ag) bottom layer shifts approximately linearly
towards longer wavelengths in the reflectance spectrum with an increasing side length.
Broadband absorption for about λ0 < 500 nm in nanostructured Au-SiO2-Au absorbers
is mainly due to material absorption of the Au bottom layer. The design is shown to be
polarization insensitive at normal incidence and the absorptance spectrum (300 nm-1100
nm) is nearly independent of the incident angle up to about 40◦. The wavelength-averaged
total absorptance of the Au-SiO2-Au and Au-SiO2-Ag absorbers are about 91.63% and
82.31%, respectively, for transverse magnetic (TM) wave at normal incidence for λ0 =
[400, 700] nm. In addition, the absorptance within top Au hexagons is enhanced up to
2.5 times for λ0 = [400, 550] nm with the Ag bottom layer mainly because of reflected
wave-enhanced localized surface plasmons and gap plasmon resonances.
In the multilayered aluminum (Al)-titanium oxide (TiO2)-Ag absorbers, plasmon-
enhanced photoelectric conversion is found to achieved mainly at edges and side walls of
the hexagons and also in the mid Al layer between hexagons. The simulated bandwidth
for the absorptance greater than 60% in the fabricated sub-optimum structure is about
293 nm for the TM wave at visible wavelengths. The optimum Al-TiO2-Ag absorbers with
nanohexagons is fabricated using electron beam lithography and the external quantum
efficiency (EQE) is measured. The calculated EQE and responsivity from the measured
photocurrent of the fabricated device is 0.0568% and 0.2899 mA/W at λ0 = 633 nm under
the bias of 0.5 V.
關鍵字(中) ★ Plasmonics, MIM, solar energy conversion 關鍵字(英) ★ Plasmonics, MIM, solar energy conversion
論文目次 TABLE OF CONTENTS
Page
中文摘要....................................................................................................................... i
ABSTRACT ................................................................................................................. ii
ACKNOWLEDGEMENTS........................................................................................... iii
TABLE OF CONTENTS ............................................................................................. iv
LIST OF FIGURES...................................................................................................... iv
LIST OF TABLES........................................................................................................ v
I Introduction .................................................................................................. 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II Literature Review and Problem Statement ................................................. 4
III Theoretical Background ............................................................................. 12
3.1 Surface Plasmon Excitation at the Metal-Dielectric Interface . . . . . . 12
3.2 MIM Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Hot Electron Generation . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Internal Photoemission Process . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Regeneration of Hot Carriers . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Power Absorption Within the Metallic Nanostructures . . . . . . . . . 19
IV Design and Analysis of MIM-based Plasmonic Absorbers.......................... 21
4.1 Convergence Tests and Validity of the Numerical Models . . . . . . . . 21
4.1.1 Convergence Test for the Mesh Size . . . . . . . . . . . . . . . . . . 21
4.1.2 Convergence Test for the Simulation Volume . . . . . . . . . . . . . 23
4.1.3 Resonance Wavelength of a Single Hexagon in MIM Structure With
Au and Ag Bottoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Validity of the Numerical Computation Model . . . . . . . . . . . . . 28
4.2 Design Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Optimization of Multi-Sized Nano-Hexagons in MOSM Configuration . 32
4.4 Convergence Test of the Reflectance Spectrum . . . . . . . . . . . . . . 40
V Simulation Results and Discussion .............................................................. 42
5.1 Plasmonic Absorbers in MIM Configuration . . . . . . . . . . . . . . . 42
5.1.1 Absorber with a Au Bottom Layer . . . . . . . . . . . . . . . . . . . 43
5.1.2 Absorber with a Ag Bottom layer . . . . . . . . . . . . . . . . . . . . 49
5.1.3 Investigations of Absorptance Enhancement with the Ag Bottom Layer 52
5.2 Plasmonic Absorbers in Nanostructured MOSM Configuration . . . . . 58
5.2.1 Spectral Behavior Studies . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Performance Evaluation in terms of Polarization Sensitivity and Om-
nidirectional Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Simulated Electric Field Intensity and Spatial Power Absorption . . 61
VI Device Fabrications and Measurements...................................................... 67
6.1 Fabrication Process Flow for MOSM Devices . . . . . . . . . . . . . . . 67
6.2 Measurement Results and Discussions . . . . . . . . . . . . . . . . . . 70
6.2.1 Voltage-Current Measurement . . . . . . . . . . . . . . . . . . . . . . 72
References .............................................74
參考文獻 References
[1] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat.
Mater., vol. 9, pp. 205-214, Mar. 2010.
[2] Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He and N. X. Fang, “A thin film
broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett., vol. 99,
pp. 253101, 2011.
[3] C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide
interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics, vol. 8, pp.
95-103, Feb. 2014.
[4] Y. K. Lee, H. Lee and J. Y. Park, “Tandem-structured, hot electron based photo-
voltaic cell with double Schottky barriers,” Sci. Rep., vol. 4, pp. 4580, Apr. 2014.
[5] F.Wang, N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,”
Nano Lett., vol. 11, pp. 5426-5430, Oct. 2011.
[6] H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron photodetection with a
plasmonic nanostripe antenna,” Nano Lett., vol. 14, no. 3, pp. 1374-1380, Feb. 2014.
[7] F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plas-
monically enhanced hot electron based photovoltaic device,” Opt. Express, vol. 21,
no. 6, pp. 7196 - 7201, Oct. 2013.

[8] C. Ng, J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E.
Gomezy, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano,
vol. 10, pp. 4704-4711, Mar. 2016.
[9] T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection
using transparent conducting oxides,” Nano Lett., vol. 15, pp. 147-152, Dec. 2015.
[10] Y. Fang, Y. Jiao, K. Xiong, R. Ogier, Z-J. Yang, S. Gao, A. B. Dahlin and M. Kall,
“Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2
nanostructures,” Nano Lett., vol. 15, pp. 4059-4065, Mar. 2015.
[11] K. Wu, Y. Zhan, S. Wu, J. Deng, and X. Li, “Surface-plasmon enhanced photode-
tection at communication band based on hot electrons,” J.Appl. Phys., vol. 18, pp.
063101-063110, Aug. 2015.
[12] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-
independent resonant light absorption using ultrathin plasmonic super absorbers,”
Nat. Commun., vol. 2, pp. 517-524, Nov. 2011.
[13] M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption
of visible radiation by gap plasmon resonators,” Opt. Express, vol. 20, no. 12, pp.
13311-13320, 2012.
[14] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science and Busi-
ness, 2007.
[15] M. Fox, Optical Properties of Solids. Oxford University Press, New York, 2011.
[16] A. D. Semenov, G. N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in su-
perconductors and its applications for radiation sensors,” Supercond. Sci. Technol.,
vol. 15, pp. R1-R16, Mar. 2002.

[17] J. J. Quinn, “Range of excited electrons in metals,” Phys. Rev., vol. 126, no. 4, pp.
1453-1458, May 1962.
[18] R. N. Stuart, F. Wooten, W. E. Spicer, “Mean free path of hot electrons and holes
in metals,” Phys. Rev. Lett., vol. 10, no. 1, pp. 7-10, Jan. 1963.
[19] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at
various temperatures,” Phys. Rev., vol. 38, pp. 45-57, July 1931.
[20] S. Mubeen, J. Lee, W-R Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the
Plasmonic Photovoltaic,” ACS Nano, vol. 8, no. 6, pp. 6066-6073, May 2014.
[21] Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanopar-
ticles supported on nanoporous TiO2,” Chem. Commun, pp. 1810-1811, 2004.
[22] Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge
separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc, vol. 127,
pp. 7632-7637, 2005.
[23] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, no. 3,
pp. 302-307, Jan. 1996.
[24] C-C Chao, C-M Wang, and J-Y Chang, “Spatial distribution of absorption in plas-
monic thin film solar cells,” Opt. Express, vol. 18, no. 11, pp. 11763-11771, May
2010.
[25] M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevol-
nyi,“Continuous layer gap plasmon resonators,” Opt. Express, vol. 19, no. 20, pp.
19310-19322, Sept. 2011.

[26] J. Jung, T. Søndergaard, and A. Bozhevolnyi, “Gap plasmon-polariton nanores-
onators: Scattering enhancement and launching of surface plasmon polaritons,” Phys.
Rev. B, vol. 79, no. 3, pp. 035401, 2009.
[27] T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scat-
tering field enahncements,” Phys. Rev. B, vol. 75, no. 7, pp. 073402, 2007.
[28] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt.
Express, vol. 15, no. 7, pp. 4198-4204, 2007.
[29] T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon
resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B, vol. 77,
no. 11, pp. 115420, 2008.
[30] Available:https://kb.lumerical.com/en/layout analysis pabs divergence py-
onting.html.
[31] E. D. Palik, “Handbook of Optical Constants I-III,” Elsevier, 1997.
[32] P. B. Johnson and R. W. Christy., “Optical constants of the noble metals,” Phys.
Rev. B, vol. 6, pp. 4370-4379, Dec. 1972.
[33] A. D. Raki´c, A. B. Djuriˇsic, J. M. Elazar, and M. L. Majewski, “Optical properties
of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, pp.
5271-5283, Aug. 1998.
[34] I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic
sapphire,” J. Opt. Soc. Am., vol. 62, pp. 1405, 1972.
[35] Available:http://www.enli.com.tw/s/en/2/product/Total-Quantum-Efficiency-
Solutions-for-Solar-Cells-QE-R-130888.html.
指導教授 張殷榮(Chang, Yin-Jung) 審核日期 2016-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明