博碩士論文 103230601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.141.41.187
姓名 柯奕恩(Mhar Ian Cua Estayan)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes)
相關論文
★ The Rheological Properties of Invasive Cancer Cells★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多的觀察指出心肺復甦術是在心臟上施加機械應力而使得心臟重新跳動。構成心臟的細胞主要有心肌細胞以及纖維母細胞兩種細胞都具有感應機械應力的離子通道並且可以被釓所抑制這項研究的目的是想要觀察在不同的密度的纖維母細胞的心肌細胞培養中,機械應力是否影響心肌細胞的動態反應。為了更詳細瞭解機械應力對心臟的動態的影響,我們設計了兩種機械應力的刺激方式: 1.) 持續性拉伸 以及 2.)持續性壓縮。我們記錄了心肌細胞跳動的影響並且計算了的脈衝間隔以及心律變異。我們的研究發現機械應力對於有高濃度的纖維母細胞的心肌培養之脈衝間隔以及心律變異沒有顯著性影響,加入釓亦無影響。在攝氏27度的時候,機械應力可以影響低濃度的纖維母細胞的心肌培養之脈衝間隔以及心律變異。
摘要(英) Mechanical stress on the heart has been observed to retrieve heart beating by means of performing cardiopulmonary resuscitation. Cardiomyocyte and Fibroblast are cells that comprises the heart. Both cells have stretch activated ion channels which can be blocked by Gadolinium. The purpose of this experiment is to observe if mechanical stress affects the cardiac dynamics in cellular level and to investigate the different densities of fibroblast. To understand the cardiac dynamics under mechanical stress, we designed two types of mechanical stimulation: 1.) Sustain Stretching and 2.) Compression. Percentage change in the Inter-Beat Interval (IBI) and Beat Rate Variability (BRV) were computed. The result of this experiment shows that mechanical stretch does not affect the IBI and BRV for samples with high number of fibroblast. Gadolinium does not affect IBI and BRV when drug is added. Mechanical stress at 27?C affects BRV and mechanical stress of low density fibroblast affects the IBI and BRV.
關鍵字(中) ★ 心率
★ 壓縮
關鍵字(英) ★ Mechanical Stretching
★ Compression
★ Cardiomyocytes
★ Beat Rate Variability
★ Inter-beat Interval
論文目次 Introduction…………………………………………………………………...1
1.1 Overview……………………………………………………….....1
1.2 Anatomy and Physiology of the Heart……………………………1
1.3 Cardiomyocytes, Fibroblast and Gap Junction……………………3
1.4 Synchronization of Cardiomyocytes………………………………8
1.5 Stretch Activated Ion Channels…………………………………..12
1.6 Temperature Effect……………………………………………….14
1.7 Previous Research on the Effects of Mechanical Stress………….14
1.7.1 Mechanically Induced Potential of Fibroblast……………..14
1.7.2 Stretching can induce Calcium Transient………………….15
1.7.3 Sino-Atrial (SA) node stretching reduced Heart Rate Variability………………………………………………….16
1.7.4 Cyclical Stretching maturates cardiomyocyte……………..17
1.7.5 Cyclical Mechanical Stretch Induced Vascular Endothelial Growth Factor……..………………………………………18
1.7.6 Cyclical Stretching affects Cardiomyocyte Cellular Organization……………………………………………….19
1.7.7 Effects of Periodic and Sustain Stretching in IBI and HRV.20
1.8 The Objective of the Research……………………………………21
Methodology…………………………………………………………………...22
2.1 Overview………………………………………………………….23
2.2 Preparation of Samples……………………………………...……23
2.2.A Cardiomyocytes and Fibroblast Preparation……………….23
2.2.B Decreasing the amount of Fibroblast………………………24
2.2.C Immunocytochemistry and Cell Counting…………………24
2.2.D Effects of Gadolinium……………………………………...26
2.3 The Whole System…………………………………………………..27
2.3.A The Set Up…………………………………………………27
2.3.B PID Temperature Controller……………………………….29
2.4 Calibration and Procedure………………………………………..…32
2.4.A Procedure for Stretching…………………………………...32
2.4.B Procedure for Compression and the Module for Compression……………………………………………….33
2.5 Image Analysis…………………....………………………………35
2.5.A Background Subtraction……………………………………35
2.6 Percentage Change of IBI and BRV………………………….…36
2.7 Statistical Analysis……………………………………………....37
2.7.1. P-value……………………………………………………..37
2.7.1.A. Welch’s T-test……………………………………38
Result.................……………………………………………………………….40
3.1 Overview………………………………………………………….40
3.2 Time Effect……………………………………………………….40
3.3 Effects of Mechanical Stress……………………………………...43
3.3.A. Time Dependence of IBI……………...…………………...43
3.3.B. Percentage Change in IBI and BRV of stretching are mostly negative for normal samples……………………………………...44
3.3.C Percentage Change in IBI and BRV of compression are mostly negative for normal samples……………………………...45
3.3.D Stretching of normal samples does not affect the IBI and BRV………………………………………………………………47
3.3.E Compression does not affect the IBI and BRV…………….49
3.4 Effects of Gadolinium…………………………………………….50
3.4.A 100μM Gadolinium does not affect the IBI and BRV……..51
3.4.B IBI increases insignificantly when 100μM Gadolinium is added……………………………………………………………...52
3.4.C Percentage Change in IBI and BRV of stretching and compression with Gadolinium are mostly positive……………….52
3.4.D Stretching of samples with Gadolinium does not affect the IBI and BRV……………………………………………………...54
3.4.E Compression of samples with Gadolinium does not affect the IBI and BRV……………………………………………………...55
3.5 Effects of Low Temperature……………………………………...56
3.5.A Percentage change of stretching and compression at 27?C are mostly in the negative region……………………………………..56
3.5.B Stretching and Compression with Gadolinium reduces the percentage change in IBI…………………………………………58
3.5.C Stretching at 27?C does not affect the IBI and but affects BRV………………………………………………………………60
3.5.D Compression at 27?C does not affect the IBI but affects BRV………………………………………………………………61
3.5.E Stretching with Gadolinium at 27?C does not affect the IBI and BRV…………………………………………………………..62
3.5.F Compression with Gadolinium at 27?C does not affect the IBI and BRV…………………………………………………………..63
3.6 Immunocytochemistry reveals reduction of Fibroblast when treated with Ara-C………………………………………………………..65
3.7 Low Density Fibroblast compression and stretching……………..65
3.7.A IBI and BRV of N, F(-) and F(+)…………………………65
3.7.B Stretching and Compression of F(-) with and without Gadolinium decreases IBI, stretching decreases BRV, and compression increases BRV……………………………………...68
3.7.C Stretching and Compression of F(-) with and without 100μM Gadolinium does affect the IBI and BRV………………………...71
Discussion, Recommendation and Summary…………………..…................75
4.1 Discussion……………………………………………..…………….75
4.1.A Effects of Sustain Stretching and Compression……………76
4.1.B Effects of Gadolinium……………………………………...76
4.1.C Effects of Temperature……………………………………..77
4.1.D Effects of Low Density Fibroblast…………………………77
4.1.E Comparison of the result to review of related literature……78
4.2 Recommendation…………………………………………………….79
4.2.A Cell Type…………………………………………………...79
4.2.B Increase Number of Samples……………………………….79
4.2.C Scaffold Cyclical Stretching and Protein Characterization...79
4.2.D Development of Stretchable Multi-electrode Array………..79
4.2.E Different Percentage of Stretching…………………………80
4.3 Summary…………………………………………………………….80
Appendix A…………………………………………………………………….81
Appendix B………………………………………………………...…………..86
Appendix C……………………………………………...……………………..88
Appendix D…………………………………………………………………….89
Appendix E……………...……………………………………………………..90
Bibliography…...………………………………………………………………95
參考文獻 [1] Betts, J. G. (2013). Anatomy & physiology. ISBN 1938168135. Retrieved
1 August 2014.
[2] Armstrong, William F., Ryan, Thomas; Feigenbaum, Harvey (2010).
Feigenbaum′s Echocardiography. Lippincott Williams & Wilkins. ISBN
978-0-7817-9557-9.
[3] Sherwood, L. (2012). Human Physiology, From Cells to Systems (8th
[revised] ed.). Cengage Learning. ISBN 9781111577438.
[4] Bers, D.M. (2002). Cardiac Excitation-Contraction Coupling.
Nature.4115, 198-205.
[5] Kohla, P., Borgb, T., & Camellitia, P. (2005). Structural and functional
characterisation of cardiac fibroblasts. Cardiovascular Research 65, 40–
51.
[6] Fahrenbach J.P.& Banach, H.(2007). The relevance of non-excitable
pacemaker for cardiac pacemaker function. J Physiol 585.2 (2007).565–
578.
[7] Rohr, S.(2004). Role of gap junctions in the propagation of the cardiac
action potential. Cardiovascular Research 62,309 – 322.
[8] Herve, J.C., Derangeon, M. (2012). "Gap-junction-mediated cell-to-cell
communication". Cell and Tissue Research. 352: 21–31.
[9] Yasuda, K. & Kaneko, T. (2010). On-chip constructive cell-Network study
(I): Contribution of cardiac fibroblasts to cardiomyocyte beating
synchronization and community effect. Journal of Nanobiotechnology. 9,1-
12.
[10] Yasuda, K., Kojima K & Tomoyuki, K. (2006). Role of the community
effect of cardiomyocyte in the entrainment and reestablishment of stable
beating rhythms. Biochemical and Biophysical Research Communications
351,209–215.
[11] Lumpkin, Ellen A.; Caterina, Michael J. (2006). "Mechanisms of sensory
transduction in the skin". Nature. 445 (7130): 858–865.
[12] Guharay, F. & Sachs, F. (1984). Stretch-Activated Single Ion Channel
Currents in Tissue Cultured Embryonic Chick Skeletal Muscle. The Journal
of Physiology. 352.1.685-701.
[13] Leem, C.H. et.al. (2008). Stretch-activated currents in cardiomyocytes
isolated from rabbit pulmonary veins. Progress in Biophysics and
Molecular Biology 97.217–231.
[14] Stefan F. J. Langer, Manfred Lambertz, Peter Langhorst, Hanno D. Schmidt
(1999). Interbeat interval variability in isolated working rat hearts at
various dynamic conditions and temperatures. Res Exp Med. 199:1–19.
[15] J.C.HERVE, K.YAMAOKA, V. W. TWIST, T. POWELL, J. C. ELLORY,
AND L. C. H. WANG (1992). Temperature dependence of
electrophysiological properties of guinea pig and ground squirrel
myocytes. Am J Physiol Regulatory Integrative Comp Physiol, 263:177-
184.
[16] Kiseleva I, Kamkin A, Pylaev A, Kondratjev D, Leiterer KP, Theres H, et
al. (1998). Electrophysiological properties of mechanosensitive atrial
fibroblasts from chronic infarcted rat heart. J Mol Cell Cardiology.
30:1083–93.
[17] Kamkin A, Kiseleva I,Wagner KD, Lammerich A, Bohm J, Persson PB, et
al. (1999). Mechanically induced potentials in fibroblasts from human right
atrium. Exp Physiology. 84:347–56.
[18] Rohr, S., Kucera, J.P. et. al. (2000). Power-Law Behavior of Beat-Rate
Variability in Monolayer Cultures of Neonatal Rat Ventricular Myocytes.
Cellular Biology. 86:1140-1145.
[19] Weckstrom, M., Han, C. & Tavi, P. (1998). Mechanisms of Stretch-Induced
Changes in [Ca21]i in Rat Atrial Myocytes Role of Increased Troponin C
Affinity and Stretch-Activated Ion Channels. Circulation Research.
83:1165-1177.
[20] Horner, S. M., et al. (1996). Contribution to Heart Rate Variability by
Mechanoelectric Feedback Stretch of the Sinoatrial Node Reduces Heart
Rate Variability. Circulation 94.7:1762-1767.
[21] Li, R.K., Mihic, A. Miyagi, Y. et. al. (2014). The effect of cyclic stretch on
maturation and 3D tissue formation of human embryonic stem cell-derived
cardiomyocytes. Biomaterials. 35: 2798-2808.
[22] http://www.mathworks.com/help/stats/ttest2.html
[23] https://www.mathworks.com/help/stats/kstest.html
[24] Ramalingam A1, Hirai A & Thompson EA. (1997). Glucocorticoid
inhibition of fibroblast proliferation and regulation of the cyclin kinase
inhibitor p21Cip1. Molecular Endocrinology. 11(5):577-86.
[25] Ziaeie, B. Wei, P. et. al. (2011). Stretchable multi-electrode array using
room-temperature liquid alloy interconnects. Journal of Micromechanics
and Microengineering.
[26] Dhein, S., Mohr, F.W. et. al. (2014). Mechanical control of cell biology.
Effects of cyclic mechanical stretch on cardiomyocyte cellular
organization. Progress in Biophysics and Molecular Biology 115 (2014)
93e102.
[27] Leychenko A, Konorev E, Jijiwa M, Matter ML (2011) Stretch-Induced
Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult
Cardiomyocytes. PLoS ONE 6(12): e29055.
doi:10.1371/journal.pone.0029055
[28] Liu, Minzhen (2016). Effects of Periodic and Sustained Stretching on
Cardiac Culture, Master’s Thesis, Graduate Institute of Biophysics, Chung
Li.
[30] https://en.wikipedia.org/wiki/P-value
[31] https://en.wikipedia.org/wiki/Cardiopulmonary_resuscitation
[32] http://www.cvphysiology.com/Cardiac%20Function/CF022
[34] Yue L, Xie J, Nattel S. (2011). Molecular determinants of cardiac
fibroblast electrical function and therapeutic implications for atrial
fibrillation. Cardiovasc Res ;89:744–53.
指導教授 陳志強、黎璧賢(Chi-Keung Chan Pik-Yin Lai) 審核日期 2017-4-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明