博碩士論文 103232002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.83.236.51
姓名 連翊鈞(I-Chun Lien)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 石墨烯應用於近紅外光偵測器元件之研究
(Investigation of Graphene Applied on Near Infrared Photodetector)
相關論文
★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-9-23以後開放)
摘要(中) 本論文主旨為製作近紅外光之石墨烯-鍺-石墨烯光偵測器(Graphene-Germanium-Graphene photodetector)並加以量測及分析。鍺的吸收波段恰可應用於光通訊常用之近紅外光波長850nm、1310nm與1550nm,一般而言會利用金屬做為光偵測器之電極,但會影響受光面積而造成光損耗。近年來石墨烯常被使用於導電薄膜,其為特殊的二維結構,此類型適合以化學氣相沉積法製備,且非常有潛力應用為透明導電膜,具有很多優異特性及光學穿透率,尤其是在紅外光區幾乎是透明的,我們也藉此提升元件的光電流及響應度。
本研究使用指叉狀電極(Interdigitated electrode)做為光偵測器之電極,其目的是利用簡單的製程做出高頻的元件並應用於IC設計當中。我們利用n-Ge基板做為光偵測器的主動區並以雙層的石墨烯做為電極,而此指叉狀電極是由CVD製備的石墨烯轉印至基板上後利用氧電漿蝕刻圖形,我們入射雷射光於元件區並通以直流電壓量測其光暗電流。以石墨烯作為電極之光偵測器除了能增加照光面積提升光電流亦可增加其光暗電流比而達到整流效果。本實驗鍺基板之光偵測器於850 nm、1310 nm及1550 nm之波長之響應度分別可達0.39 A/W、0.59 A/W及0.77 A/W,其光暗電流比也達三個數量級以上。
摘要(英) A graphene-germanium-graphene photodetector (GSG PD) is investigated in this research with transparent graphene electrodes. Germanium is a good absorption coefficient material in near infrared wavelength including 850 nm, 1310 nm and 1550 nm for optics communication. Generally, the metal electrode was utilized for the photodetector applications. However, there were a lot of light loss for the non-transparency. In recent years, graphene has been found to be a good transparent conductive film (TCF) with a two-dimensional monolayer composed by sp2-bonded carbon atoms. Due to its exceptional electrical conductivity and high optical transmittance especially including near infrared, graphene is one of the promising candidates for TCFs. Therefore, the higher photo-current and responsivity of the device with graphene can be achieved.
In this investigation, interdigitated graphene electrodes were applied to a near infrared photodetector. We used a n-type germanium as the substrates and graphene layers as the interdigitated electrodes of the photodetector. The interdigitated graphene electrodes were prepared by chemical vapor deposition (CVD), and transferred to the substrate first, then patterned by O2 plasma. The responsivity of the n-Ge PD was 0.39 A/W, 0.59 A/W and 0.77 A/W for the wavelength 850 nm, 1310 nm and 1550 nm of the incident light, separately. And the photo to dark current ratio was over three orders.
關鍵字(中) ★ 石墨烯
★ 鍺
★ 光偵測
★ 響應度
★ 指叉狀電極
★ 光暗電流比
關鍵字(英) ★ graphene
★ germanium
★ photodetector
★ responsivity
★ interdigitated
★ photo to dark current
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 序論 1
1-1 前言 1
1-2 研究動機 4
1-3 論文架構 6
第二章 石墨烯基礎理論 7
2-1 石墨烯發展概況 7
2-2 石墨烯結構與特性 8
2-3 石墨烯製備方法 13
2-3-1 機械剝離法 13
2-3-2 碳化矽磊晶法 15
2-3-3 氧化石墨烯還原法 17
2-3-4 化學氣相沉積法 18
第三章 光偵測器原理 22
3-1 蕭特基接觸與歐姆接觸 22
3-2 光偵測器電子電洞傳遞行為 26
3-3 光偵測器操作原理 27
3-3-1 原理 27
3-3-2 響應度 29
第四章 實驗製程與儀器介紹 30
4-1 近紅外光偵測器元件設計 31
4-1-1 GSG PD元件 31
4-1-2 指叉狀電極設計 32
4-1-3 響應度計算模擬 32
4-2 元件製作流程 36
4-3 石墨烯之製程方法 38
4-3-1 化學氣相沉積法製程石墨烯 39
4-3-2 石墨烯轉印 40
4-4 分析儀器 42
4-4-1 拉曼光譜儀 42
4-4-2 掃描式電子顯微鏡 44
4-4-3 霍爾量測儀 45
4-4-4 紫外光電子能譜儀(UPS) 46
4-4-5 可見光-近紅外光光譜儀 48
4-4-6 響應度量測系統 49
4-4-7 頻率響應量測系統 50
第五章 結果與討論 51
5-1 石墨烯導電膜之分析 51
5-1-1 拉曼光譜 52
5-1-2 電性分析與光學穿透率 53
5-1-3 功函數 55
5-1-4 元件平面圖 57
5-2 n-Ge光偵測器元件 58
5-2-1 光電特性量測 58
5-2-2 響應度 64
5-2-3 頻率響應及響應時間 67
5-3 n-Si光偵測器元件 71
5-3-1 光電特性量測 71
5-3-2 響應度 73
第六章 結論與未來展望 74
參考文獻 76
參考文獻 [1] P. S. Goley and M. K. Hudait, "Germanium based field-effect transistors: Challenges and opportunities," Materials, vol. 7, pp. 2301-2339, 2014.
[2] C. Boztug, J. R. Sánchez-Pérez, F. Cavallo, M. G. Lagally, and R. Paiella, "Strained-germanium nanostructures for infrared photonics," ACS nano, vol. 8, pp. 3136-3151, 2014.
[3] R. Pillarisetty, "Academic and industry research progress in germanium nanodevices," Nature, vol. 479, pp. 324-328, 2011.
[4] J. Wang and S. Lee, "Ge-photodetectors for Si-based optoelectronic integration," Sensors, vol. 11, pp. 696-718, 2011.
[5] K.-W. Ang and G.-Q. Lo Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser focus world, vol. 46, 2010.
[6] K. F. Brennan, J. Haralson, J. W. Parks, and A. Salem, "Review of reliability issues of metal-semiconductor-metal and avalanche photodiode photonic detectors," Microelectronics Reliability, vol. 39, pp. 1873-1883, 1999.
[7] I. A. Fischer, L. Augel, T. Kropp, S. Jitpakdeebodin, N. Franz, F. Oliveira, et al., "Ge-on-Si PIN-photodetectors with Al nanoantennas: The effect of nanoantenna size on light scattering into waveguide modes," Applied Physics Letters, vol. 108, p. 071108, 2016.
[8] J. Michel, J. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527-534, 2010.
[9] S. Kagawa, T. Kaneda, T. Mikawa, Y. Banba, Y. Toyama, and O. Mikami, "Fully ion‐implanted p+‐n germanium avalanche photodiodes," Applied Physics Letters, vol. 38, pp. 429-431, 1981.
[10] K.-S. Hyun and C.-Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with pin multiplication layer structure," Journal of applied physics, vol. 81, pp. 974-984, 1997.
[11] 林宗孝, "近紅外光單晶鍺薄膜光偵測器; Near Infrared Crystal Germanium film Photodetector," 2015.
[12] S. Y. Chou, Y. Liu, and T. Carruthers, "32 GHz metal‐semiconductor‐metal photodetectors on crystalline silicon," Applied physics letters, vol. 61, pp. 1760-1762, 1992.
[13] H. C. Lee and B. Van Zeghbroeck, "A novel high-speed silicon MSM photodetector operating at 830 nm wavelength," Electron Device Letters, IEEE, vol. 16, pp. 175-177, 1995.
[14] L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, "Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer," Electron Devices, IEEE Transactions on, vol. 45, pp. 2018-2023, 1998.
[15] Y. An, A. Behnam, E. Pop, and A. Ural, "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions," Applied Physics Letters, vol. 102, p. 013110, 2013.
[16] Z. Khurelbaatar, Y.-H. Kil, H. K. Lee, J.-H. Yang, S. Kang, T. S. Kim, et al., "A comparative study of IR Ge photodiodes with a Schottky barrier contact and metal-semiconductor-metal structure," Journal of the Korean Physical Society, vol. 65, pp. 2100-2106, 2014.
[17] T. Maekura, K. Yamamoto, H. Nakashima, and D. Wang, "Effects of metal/Ge contact and surface passivation on direct band gap light emission and detection for asymmetric metal/Ge/metal diodes," Japanese Journal of Applied Physics, vol. 55, p. 04EH08, 2016.
[18] https://www.elprocus.com/basic-elements-of-fiber-optic-communication-system-and-its-working/.
[19] H. Bi, F. Huang, J. Liang, X. Xie, and M. Jiang, "Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells," Advanced Materials, vol. 23, pp. 3202-3206, 2011.
[20] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, "Mechanical properties of suspended graphene sheets," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, p. 2558, 2007.
[21] 李連忠, "2010諾貝爾物理獎特輯," 物理專文, vol. 33, p. 146, 2011.
[22] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology, vol. 5, pp. 574-578, 2010.
[23] 莊鎮宇 and 蔡春鴻, "2010 諾貝爾物理獎特輯," 物理專文, vol. 33, pp. 148-154, 2011.
[24] 林永昌, 呂俊頡, 鄭碩方, and 邱博文, "石墨烯之電子能帶特性與其元件應用," 物理雙月刊, vol. 33, pp. 191-202, 2011.
[25] E. Y. Andrei, G. Li, and X. Du, "Electronic properties of graphene: A perspective from scanning tunneling microscopy and magneto-transport," arXiv preprint arXiv:1204.4532, 2012.
[26] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[27] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-9, 2004.
[28] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-073104-3, 2005.
[29] J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana, et al., "Layer-resolved graphene transfer via engineered strain layers," Science, vol. 342, pp. 833-836, 2013.
[30] W. A. De Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[31] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir–Blodgett films," Nature nanotechnology, vol. 3, pp. 538-542, 2008.
[32] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
[33] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature nanotechnology, vol. 3, pp. 270-274, 2008.
[34] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊, vol. 33, pp. 163-167, 2011.
[35] C. M. Orofeo, H. Hibino, K. Kawahara, Y. Ogawa, M. Tsuji, K.-i. Ikeda, et al., "Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene," Carbon, vol. 50, pp. 2189-2196, 2012.
[36] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, et al., "Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire," ACS nano, vol. 4, pp. 7407-7414, 2010.
[37] P. Sutter, J. T. Sadowski, and E. Sutter, "Graphene on Pt (111): Growth and substrate interaction," Physical Review B, vol. 80, p. 245411, 2009.
[38] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[39] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, "Growth of large-area graphene films from metal-carbon melts," Journal of Applied Physics, vol. 108, p. 094321, 2010.
[40] H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, "Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene," The Journal of Physical Chemistry Letters, vol. 3, pp. 2228-2236, 2012.
[41] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-4, Jun 5 2009.
[42] L. Gan and Z. Luo, "Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper," ACS nano, vol. 7, pp. 9480-9488, 2013.
[43] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
[44] A. Zangwill, Physics at surfaces: Cambridge University Press, 1988.
[45] 施敏 and 李明逵, 半導體元件物理與物理技術, 第三版 ed. 國立交通大學出版社, 2013.
[46] Y. C. Lin, Vertical Polymer Transistor with high on/off ratio and low operation voltage: National Chiao Tung University, 2009.
[47] S. Jain and D. Roulston, "A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and Ge x Si 1− x strained layers," Solid-State Electronics, vol. 34, pp. 453-465, 1991.
[48] 魏燕伶, "具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器; Low Dark-Current and High-Thermal Stability Planar Si-Based MSM Photodetector with Thin Amorphous Silicon-Alloy Grade Superlattice-Like Multilayers," 2004.
[49] S. Averine, Y. Chan, and Y. Lam, "Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures," Solid-State Electronics, vol. 45, pp. 441-446, 2001.
[50] J. E. Bowers and C. A. Burrus Jr, "Ultrawide-band long-wavelength pin photodetectors," Lightwave Technology, Journal of, vol. 5, pp. 1339-1350, 1987.
[51] "Raman_spectroscopy," Wikipedia.
[52] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical review letters, vol. 97, p. 187401, 2006.
[53] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, "Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes," Nanotechnology, vol. 23, p. 035603, 2012.
[54] 汪建民, 材料分析. 中國材料科學學會發行, 1998.
[55] 羅晏明, "透明導電薄膜的功函數調變對光電特性之影響," 2012.
[56] K. Jacobs, U. H. V. Lab, Ed., ed. Saarland University

[57] 李正中, 薄膜光學與鍍膜技術, 第七版 ed. 台灣: 藝軒圖書出版, 2012.
[58] C.-Y. Li, "以磷化銦為基材, 應用於 850nm 波段且具有高速 (> 25Gbit/sec), 高效率大主動區孔徑的 pin 光檢測器之設計和分析," 2014.
[59] 肖柯, 吕宏鸣, 伍晓明, 钱鹤, and 吴华强, "石墨烯光探测器及其制备方法," 2015.
[60] J.-P. Colinge and C. A. Colinge, Physics of semiconductor devices: Springer Science & Business Media, 2005.
[61] W. Mönch, Electronic properties of semiconductor interfaces vol. 43: Springer Science & Business Media, 2013.
[62] S. S. Li, Semiconductor physical electronics: Springer Science & Business Media, 2012.
[63] Y. Selzer, A. Salomon, and D. Cahen, "The importance of chemical bonding to the contact for tunneling through alkyl chains," The Journal of Physical Chemistry B, vol. 106, pp. 10432-10439, 2002.
[64] Y. J. Liu and H. Z. Yu, "Alkyl Monolayer‐Passivated Metal–Semiconductor Diodes: Molecular Tunability and Electron Transport," ChemPhysChem, vol. 3, pp. 799-802, 2002.
[65] Y. J. Liu and H. Z. Yu, "Alkyl monolayer passivated metal–semiconductor diodes: 2: Comparison with native silicon oxide," ChemPhysChem, vol. 4, pp. 335-342, 2003.
[66] Y.-J. Liu and H.-Z. Yu, "Molecular passivation of mercury-silicon (p-type) diode junctions: alkylation, oxidation, and alkylsilation," The Journal of Physical Chemistry B, vol. 107, pp. 7803-7811, 2003.
[67] E. J. Faber, L. C. de Smet, W. Olthuis, H. Zuilhof, E. J. Sudhölter, P. Bergveld, et al., "Si C Linked Organic Monolayers on Crystalline Silicon Surfaces as Alternative Gate Insulators," ChemPhysChem, vol. 6, pp. 2153-2166, 2005.
[68] T. Nagano, M. Tsutsui, R. Nouchi, N. Kawasaki, Y. Ohta, Y. Kubozono, et al., "Output Properties of C60 Field-effect transistors with Au electrodes modified by 1-alkanethiols," The Journal of Physical Chemistry C, vol. 111, pp. 7211-7217, 2007.
[69] X.-L. Tang, H.-W. Zhang, H. Su, and Z.-Y. Zhong, "A novel spin-polarized transport effect based on double-Schottky barriers," Physica E: Low-dimensional Systems and Nanostructures, vol. 31, pp. 103-106, 2006.
[70] https://en.wikipedia.org/wiki/Diode.
[71] J. Burm, K. I. Litvin, W. J. Schaff, and L. F. Eastman, "Optimization of high-speed metal-semiconductor-metal photodetectors," IEEE Photonics Technology Letters, vol. 6, pp. 722-724, 1994.
[72] J. Bowers and C. Burrus, "Ultrawide-band long-wavelength pin photodetectors," Journal of lightwave technology, vol. 5, pp. 1339-1350, 1987.
[73] M. Ito and O. Wada, "Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSi x contacts," IEEE journal of quantum electronics, vol. 22, pp. 1073-1077, 1986.
[74] H. Beneking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Transactions on Electron Devices, vol. 29, pp. 1420-1431, 1982.
[75] H. Hodara, "Fiberoptic receiver performance: A tutorial review," Fiber & Integrated Optics, vol. 4, pp. 233-285, 1983.
[76] G. W. Farnell, I. A. Cermak, P. Silvester, and S. Wong, "Capacitance and field distributions for interdigital surface-wave transducers," DTIC Document1969.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2016-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明