博碩士論文 103232014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.221.145.174
姓名 洪上傑(Shang-Chieh Hung)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 鍺薄膜堆疊於矽晶太陽能電池影響之研究
(The research of germanium thin film depositing on silicon solar cell)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-1以後開放)
摘要(中) 在眾多太陽能電池種類中,就屬三五族堆疊型太陽能電池效率最高,其轉換效率可以達到44%,而目前多數的堆疊型太陽能電池是以鍺基板來成長三五族材料,但成本卻較矽晶太陽能電池高,矽除了便宜外,發展也相對成熟,故以矽基板取代鍺基板是未來研究的一大方向。
本研究主要探討鍺薄膜於矽基堆疊型太陽能電池中的特性與影響,並使用模擬的方式來分析堆疊型太陽能電池中的各層特性,透過調變各層薄膜的厚度與濃度,研究其各層電池的電流匹配值。從模擬中發現,當磷化銦鎵厚度為1400奈米,砷化鎵厚度為290奈米,本質鍺薄膜在30奈米時,其電流匹配值為12.8mA,轉換效率為32.3%。
在矽基堆疊三五族太陽能電池之中,製作底層矽基太陽能電池有多種的方式,例如爐管擴散法、離子佈植法或化學氣相沉積法。而本實驗主要使用離子佈植方式製作底層矽基太陽能電池,並利用退火修復離子佈植造成的缺陷。實驗結果顯示,在900度2分鐘退火所量測到的X光繞射半高寬值為最佳,最後得到的太陽能電池轉換效率達到10.9%。
最後,探討鍺薄膜成長於矽基太陽能電池上的光性和電性,與底層矽基太陽能電池效率。結果顯示,在鍺薄膜厚度的增加下,X光繞射半高寬值有變低的趨勢,在電性方面,厚度增加下,其薄膜缺陷變多而使片電阻值增大;光性方面則是厚度越厚,在長波長的穿透率則越低。在成長完鍺薄膜後經過700度5分鐘的退火,X光繞射半高寬可達到358.56 arcsec,而成長完鍺薄膜後蝕刻對離子佈植矽基太陽能電池的轉換效率降低約0.6 %。
摘要(英) III-V compound tandem solar cells that combine low and high bandgap materials tailored to the incident solar spectrum have very high conversion efficiencies (~44%). However most of the III-V tandem solar cells are grown on Ge or GaAs substrates, both are more expensive than Silicon substrate. In spite of unmatched performance of III-V solar cells, silicon not only have lower price in the market but also have mature technique. Therefore, germanium substrate replaced by silicon substrate is the main direction of research in the future.
In this study, we focused on the characteristics and influence of germanium thin film depositing on silicon solar cell. At first, we use PC1D simulation software to analyze and modulate thickness and concentration of each layer and find the current-matching value. From the simulation results, we found that when the thickness of gallium indium phosphide (GaInP) film is 1400nm, gallium arsenide (GaAs) film is 290nm and germanium (Ge) film is 30nm, we got the current-matching value is 12.8mA, conversion efficiency is 32.3%.
There are many methods to fabricate the silicon solar cell (Bottom cell), such as diffusion, ion implantation or chemical vapor deposition. We use method of ion implantation to fabricate silicon solar cell in our experiments. After ion implantation process, we use anneal to repair defects caused by ion implantation. Experimental results show that when we anneal at 900 °C for 2 minutes, the best full width at half maximum (FWHM) we can measured. The result of silicon solar cell conversion efficiency is 10.9%.
Finally, we discuss the optical and electrical properties of germanium thin films grown on silicon solar cell. The results showed that the thickness of the germanium thin film increases, the best values of FWHM we can obtain. In terms of electrical properties, as the thickness of germanium film increases, the defects and sheet resistance value increase. In terms of optical properties, as the thickness of germanium film increases, the transmittance at long wavelength decrease. After growing the germanium film at annealing 700 °C for 5 minutes, we can obtain the value of FWHM is 358.56 arcsec. When we grow the germanium film and then etching it on silicon solar cell, we measured the conversion efficiency decreased by 0.6 %.
關鍵字(中) ★ 鍺
★ 堆疊型
★ 太陽能電池
★ 離子佈植
關鍵字(英) ★ Germanium
★ tandem
★ solar cell
★ ion implantation
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
1-4 論文架構 4
第二章 基本原理與文獻回顧 5
2-1 太陽能電池基本運作與分析原理 5
2-2 離子佈植法原理與介紹 13
2-2.1 離子佈植原理 13
2-2.2 離子佈植矽基太陽能電池介紹 17
2-3 鍺薄膜應用於堆疊型太陽能電池原理 19
2-4 堆疊型太陽能電池運作原理與介紹 21
第三章 研究方法與實驗設備 24
3-1 PC1D & SRIM模擬程式介紹 24
3-1.1 PC1D介紹 24
3-1.2 SRIM介紹 25
3-2 矽基太陽能電池製備流程 26
3-2.1 晶圓清洗流程 26
3-2.2 太陽能電池製備流程 27
3-3 太陽能電池製程設備 28
3-3.1 中電流離子佈植設備 (The Varian Ion Implant Systems) 28
3-3.2 電漿輔助化學氣相沉積設備 (PECVD) 28
3-3.3 電子迴旋共振化學氣相沉積設備 (ECRCVD) 29
3-3.4 離子濺鍍系統 (Sputter) 30
3-3.5 電子槍蒸鍍系統 (E-gun) 31
3-3.6 快速熱退火 (ARTS-RTA/ LPT-RTA) 32
3-3.7 網版印刷機台 (Screen Print) 33
3-4 薄膜分析設備 34
3-4.1 霍爾量測系統 (Hall measurement) 34
3-4.2 二次離子質譜儀 (SIMS) 35
3-4.3 四點探針量測 (Four-point Probe) 36
3-4.4 高解析度X射線繞射分析儀 (HRXRD) 37
3-4.5 紫外光-可見光-近紅外光 光譜儀 (UV-Vis-NIR) 38
3-5 太陽能電池量測設備 39
3-5.1 光譜響應量子效率量測系統 (IPCE) 39
3-5.2 太陽光模擬器 (Solar simulator) 40
第四章 模擬與計算 41
4-1 模擬理論計算 41
4-1.1 單層結構太陽能電池計算 41
4-1.2 雙層及多層結構太陽能電池計算 42
4-2 雙層堆疊型太陽能電池之底層矽基太陽能電池模擬 45
4-2.1 調變矽基板厚度對矽基太陽能電池影響 46
4-2.2 調變摻雜層厚度對矽基太陽能電池的影響 47
4-2.3 調變摻雜層濃度對矽基太陽能電池的影響 48
4-2.4 調變背表面電場摻雜層厚度與濃度對矽基太陽能電池的影響 49
4-2.5 鍺薄膜厚度對矽基太陽能電池的影響 50
4-2.6 調變頂層砷化鎵摻雜層厚度對底層電池之影響 51
4-2.7 調變砷化鎵摻雜層濃度對底層電池之影響 52
4-3 雙層堆疊型太陽能電池之頂層砷化鎵太陽能電池模擬 53
4-3.1 調變N型砷化鎵摻雜層厚度對砷化鎵太陽能電池的影響 54
4-3.2 調變P型砷化鎵摻雜層厚度對砷化鎵太陽能電池的影響 56
4-4 Ⅲ-Ⅴ族雙層堆疊型矽基太陽能電池模擬 57
4-4.1 調變N/P型砷化鎵厚度對雙層堆疊型矽基太陽能電池影響 58
4-4.2調變P型砷化鎵濃度對雙層堆疊型矽基太陽能電池影響 60
4-4.3 調變表面復合速率對雙層堆疊型太陽能電池之影響 61
4-4.4 鍺薄膜與砷化鎵厚度對雙層堆疊型矽基太陽能電池結果 62
4-5 Ⅲ-Ⅴ族三層堆疊型矽基太陽能電池模擬 67
4-5.1 調變磷化銦鎵層厚度對堆疊型矽基太陽能電池影響 68
4-5.2 調變P型磷化銦鎵摻雜層濃度對三層堆疊型矽基太陽能電池影響 70
4-5.3 鍺薄膜與磷化銦鎵薄膜厚度對三層堆疊型矽基太陽能電池結果 71
4-6 中電流離子佈植模擬 75
4-6.1 調變硼離子入射功率對入射深度的影響 75
4-6.2 調變磷離子入射功率對入射深度的影響 80
4-6.3 調變硼離子入射功率對矽基鍺薄膜入射深度的影響 83
第五章 實驗結果與討論 85
5-1 中電流離子佈植矽基太陽能電池 85
5-1.1 離子佈植之初步測試與模擬比較 85
5-1.2 摻雜不同硼離子濃度和入射功率對矽基太陽能電池的影響 87
5-1.2.1 改變不同熱退火時間對結晶品質之影響 88
5-1.2.2 改變不同熱退火時間對轉換效率之影響 90
5-1.2.3 改變不同熱退火溫度對轉換效率之影響 92
5-1.2.4 摻雜背電場對轉換效率之影響 93
5-1.3 太陽能電池的特性分析 94
5-2 鍺薄膜應用於矽基太陽能電池的研究探討 96
5-2.1 不同厚度的矽基鍺薄膜對光性與電性探討 96
5-2.2 鍺薄膜經由不同退火溫度的比較 99
5-2.3 成長完鍺薄膜再蝕刻對於離子佈植矽基太陽能電池的影響 101
5-2.4 離子佈植在矽基鍺薄膜上對鍺薄膜的影響 102
第六章 結論與未來展望 103
6-1 結論 103
6-1.1 Ⅲ-Ⅴ族堆疊型矽基太陽能電池模擬 103
6-1.2 離子佈植之太陽能電池 104
6-1.3 鍺薄膜應用於太陽能電池 104
6-2 未來展望 105
6-2.1 Ⅲ-Ⅴ族三層堆疊型矽基太陽能電池 105
參考文獻 106
參考文獻 [1] “Renewables 2016 Global Status Report”, Renewable
Energy Policy Network for the 21st Century (2016),
pp. 62
[2] Solar cell, Available from:
https://en.wikipedia.org/wiki/Solar_cell
[3] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[4] 黃建榮,有機太陽能電池技術發展,光連雙月刊2014年5月,No.
111,第55~ 60頁
[5] Tiedje, T., Yablonovitch, E., Cody, G.D. and Brooks,
B.G. (1984) ‘Limiting efficiency of silicon solar
cells’, IEEE Transactions on Electron Devices, 31(5),
pp. 711–716.
[6] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[7] King, R.R., Bhusari, D., Larrabee, D., Liu, X..,
Rehder, E., Edmondson, K., Cotal,H., Jones, R.K.,
Ermer, J.H., Fetzer, C.M., Law, D.C. and Karam, N.H.
(2012)“Solar cell generations over 40% efficiency”,
Prog. Photovolt: Res. Appl., 20(6),pp. 801–815.
[8] Henry Hieslmair , Ian Latchford , Lisa Mandrell ,
Moon Chun & Babak Adibi , “Ion Implantation for
silicon solar cells”, Intevac, Santa Clara,
California, USA
[9] Donald A. Neamen, Semiconductor Physics and Devices:
Basic Principles (4e), McGraw-Hill, (2012).
[10] Pelanchon, F., P. Mialhe, and J.P. Charles, “The
photocurrent and the open-circuit of a silicon
solar-cell”, solar cells,28(1): p. 41–55, (1990).
[11] Schimpe, R., Theory of reflection at the facet of a
semiconductor-laser. Aeu-Archiv Fur Elektronik Und
Ubertragungstechnik-International Journal of
Electronics and Communications, 46(2): p. 80–85
(1992).
[12] Štulík, P. and Singh, J. (1997b) ‘Optical modelling
of a single-junction p-i-n type and tandem structure
amorphous silicon solar cells with perfect current
matching’, Solar Energy Materials and Solar Cells,
46(4), pp. 271–288.
[13] 蕭宏,半導體製程技術導論,全華出版社,民國一零二年
[14] Maszara, W.P. and Rozgonyi, G.A. (1986) ‘Kinetics of
damage production in silicon during self
implantation’, Journal of Applied Physics, 60(7),
p.2310.
[15] Lanterne, A., Le Perchec, J., Gall,S., Manuel,S.,
Coig, M., Tauzin, A.and Veschetti , Y. (2014)
‘Understanding of the annealing temperature impact
on ion implanted bifacial n-type solar cells to
reach 20.3% efficiency’, Progress in Photovoltaics:
Research and Applications, 23(11), pp. 1458–1465.
[16] Liang, P., Han, P.-D., Fan, Y.-J.and Xing, Y.-P.
(2015)‘Boron implanted emitter for n-type silicon
solar cell’, Chinese Physics B, 24(3), p. 038801
[17] Bateman, N., Sullivan, P.,Reichel, C., Benick,J. and
Hermle, M.(2011)‘High quality ion implanted boron
emitters in an interdigitated back contact solar
cell with 20% efficiency’, Energy Procedia, 8, pp.
509–514.
[18] Tao, Y., Ok, Y.-W., Zimbardi, F., Upadhyaya, A.D.,
Lai, J.-H., Ning, S., Upadhyaya,V.D. and Rohatgi, A.
(2014) ‘Fully ion-implanted and screen-printed 20.2%
efficient front junction silicon cells on 239 cm 2’,
IEEE Journal of Photovoltaics, 4(1) ,pp. 58–63.
[19] Ruzinski, M., Saly, V., Ruzinska, D., Redi, P.,
Lori, L. and Tassi, S. (1994) ‘Efficiency (17.2%)
all-implanted single crystalline silicon solar cells
with screen printed contacts’, 2, pp. 1485–2.
[20] Bordin, N., Kreinin, L., Broder, J., Eisenberg, N.,
Grigorieva, G., Zvyagina, K. and Kagan, M. (2006)
‘Recombination parameters of Si solar cells with
back surface field formed by ion implantation’
,1,pp.1171–1174
[21] Wu, J., Liu, Y., Wang, X. and Zhang, L. (2014)
‘Application of ion implantation Emitter in PERC
solar cells’, IEEE Journal of Photovoltaics, 4(1),
pp. 52–57.
[22] Ok, Y.-W., Upadhyaya, A.D., Tao, Y., Zimbardi, F.,
Ning, S. and Rohatgi, A. (2011) ‘Ion-implanted and
screen-printed large area 19.6% efficient n-type
bifacial Si solar cell’, , pp. 2240–2243..
[23] Bosi, M. and Attolini, G. (2010) ‘Germanium: Epitaxy
and its applications’ , Progress in Crystal Growth
and Characterization of Materials, 56(3-4), pp. 146–
174.
[24] Watanabe, K., Wang, Y., Sodabanlu, H., Sugiyama, M.
and Nakano, Y. (2014) ‘Strain effect for different
phosphorus content of InGaAs/ GaAsP super-lattice in
GaAs p–i–n single junction solar cell’, Journal of
Crystal Growth, 401, pp. 712–716.
[25] Maragliano, C., Zayan, A., Stefancich, M.,
Scientific and Publishing, A. (2014)
‘Three-Dimensional point-focus spectral splitting
solar Concentrator system’,International Journal of
Optics and Applications, 4(4A), pp. 11–6.
[26] Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and
Dunlop, E.D. (2016) ‘Solar cell efficiency tables
(version 48)’, Progress in Photovoltaics: Research
and Applications, 24(7), pp. 905–913.
[27] Price of different substrate, Available from:
http://www.universitywafer.com/
[28] 晶體應變技術,取自
http://baike.baidu.com/view/2689272.htm
[29] Thermal expansion, Available from:
https://en.wikipedia.org/wiki/Thermal_
expansion#Coefficient_of_thermal_expansion
[30] Tanabe, K.(2009)‘A review of Ultrahigh efficiency
III-V semiconductor compound solar cells:
Multijunction tandem, lower dimensional, Photonic
up/down conversion and Plasmonic Nanometallic
structures’, Energies, 2(3), pp. 504–530.
[31] Group-III/As and group-III/N material systems,
Available from:
http://gorgia.noip.com/phd/html/thesis/phd_html/node4.ht
ml
[32] Liu , L., Chen , N., Wang , Y., Bai , Y., Cui , M.
and Gao , F. (2009) ‘Temperature dependent spectral
response characteristic of III-V compound tandem
cell’, Science Bulletin, 54(3), pp. 353–357.
[33] Shahrjerdi, D., Bedell, S.W., Ebert, C., Bayram, C.,
Hekmatshoar, B., Fogel, K.,Lauro, P., Gaynes, M.,
Gokmen, T., Ott, J.A. and Sadana, D.K. (2012) ‘High-
efficiency thin-film InGaP/InGaAs/Ge tandem solar
cells enabled by controlled spalling technology’,
Applied Physics Letters, 100(5), p. 053901.
[34] Clugston, D.A. and Basore, P.A. (2003) ‘PC1D version
5: 32-bit solar cell modeling on personal computers’
, pp. 207–210.
[35] J.F. Ziegler, and J.P. Biersack, SRIM : The Stopping
and Range of ions in Matter,Version 96.07. IBM-
Research, Yorktown, (1996).
[36] Donald A. Neamen, “Semiconductor Physics and
Devices” , p.177–180, (2003).
[37] M. Labrune, "Silicon surface passivation and
epitaxial growth on c-Si by low temperature plasma
processes for high efficiency solar cells",
ParisTech Doctoral thesis in Materials Science
(2011).
[38] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[39] Kurtz, S.R., Faine, P. and Olson, J.M. (1990)
‘Modeling of two-junction, series-connected tandem
solar cells using top-cell thickness as an
adjustable paramete- r ’ , Journal of Applied
Physics, 68(4), p. 1890.
[40] 劉蕊,李欣,劉晶晶,陳松岩,李成,黄巍,“高效GaAs/ Si疊層
電池設計優化”,廈門大學學報,51卷,第4期,2012年7月
[41] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[42] Satoshi Tohoda, Daisuke Fujishima, Ayumu Yano,
Akiyoshi Ogane, Kenta Matsuyama, and Yuya Nakamura,
“Future directions for higher-efficiency HIT solar
cells using a Thin Silicon Wafer”, (2012).
[43] 簡併半導體,
Available from:
https://en.wikipedia.org/wiki/Degenerate_semiconductor
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2016-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明