博碩士論文 103256018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.17.79.60
姓名 陳家緯(Chia-Wei Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 染料敏化太陽能電池室內弱光智慧貼紙之研究
(The Study of Dye-Sensitized Solar Cell for Low Light Level Wisdom Sticker)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的核心概念是比較染料敏化太陽能電池(DSSC)與其他種類的太陽能電池在200~10000 Lux的光照環境,利用不同濃度的電解液具有不同穿透率的特性,因穿透率提升進而增加進光量,增加發電效率最多117%;與光波導元件的折射率差異,將照射至光波導元件的光線引導至自供電裝置中的DSSC,進而提高發電效率。本研究使用聚二甲基矽氧烷(PDMS)、 不同粒徑的散射型TiO2作為波導材料應用於DSSC電池表面,從低Lux到高Lux提升輸出功率51.3%~20%;再針對軟性DSSC的在軟性基材上的改良搭配軟性電路板,將軟板可撓模度從2.85降至1.07,達到整體軟性化的目標。
摘要(英) This study compares dye-sensitized solar cells (DSSC) with other types of solar cells in a light environment of 200~10000 Lux. Because increase in penetration rates can enhance the brightness of the lighting and can vary in different concentrations of electrolyte, the characteristic is exploited to differentiate refractive index from the optical waveguide component to irradiate the light from the optical waveguide component to the DSSC in a self-powered device, thereby improving power generation efficiency. In this study, Polydimethylsiloxane (PDMS) and different particle size TiO2 were used as waveguide materials on the surface of DSSC cells to increase the output power from low Lux to high Lux by 51.3%~20%. An improved flexible circuit board was also used with the flexible DSSC to achieve the overall flexible goal.
關鍵字(中) ★ 染料敏化
★ 波導
關鍵字(英) ★ DSSC
★ PDMS
論文目次 第一章、緒論 1
1-1 研究目的 1
1-2 文獻回顧 2
第二章、研究內容與方法 4
第三章、理論 6
3-1 染料敏化太陽能電池原理 6
3-2 染料敏化太陽能電池運作機制 7
3-3工作電極 10
3-4對電極 11
3-5染料 11
3-6電解液 12
3-7波導材料 13
3-8 可撓模數 15
第四章、 研究成果 16
4-1 實驗步驟 16
4-2 儀器設備 18
4-3 室內位置感測器運作模式 19
1.室內位置感測器步驟 19
2.室內位置感測器配置 19
3.室內位置感測器運作 20
4-4 氣體感測器運作模式 22
1.氣體感測器步驟 22
2. 氣體感測器配置 22
3.氣體感測器運作 22
4-5 實驗結果 24
第五章、 結論與未來展望 33
參考文獻 34
參考文獻 [1] Yeong-Lin Lai, Yeong-Kang Lai2, Chun-Yi Zheng, Guo-Hui Xu, Yi-Ming Wang, and Shan-Ching Chen, “Fabrication of working and counter electrodes on plastic substrates for flexible dye-sensitized solar cells,” Matec Web of Conferences, Vol. 123, pp. 31, 2017.
[2] Wilfried G.J.H.M. van Sark, Keith W.J. Barnham, and Lenneke H. Slooff, “Luminescent Solar Concentrators - A review of recent results,” Optics Express, Vol. 16, Issue. 26, pp. 21773-21792, 2008.
[3] Michael G. Debije, Jean-Pierre Teunissen, Maud J. Kastelijn, Paul P.C. Verbunt, and Cees W.M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Solar Energy Materials and Solar Cells, Vol. 93, Issue. 8, pp. 1345-1350, 2009.
[4] Jana Bomm, and Andreas Büchtemann, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Solar Energy Materials and Solar Cells, Vol.95, Issue. 8,pp.2087-2094, 2011.
[5] L. Desmet, A. J. M. Ras, D. K. G. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Optics Express, Vol.37, Issue. 15, pp. 3087-3089, 2012.
[6] L. H. Slooff, E. E. Bende, and A. R. Burgers, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Physica Status Solidi-Rapid Research Letter, Vol. 2, Issue. 6, pp. 257-259, 2008.
[7] G. Maggioni, A. Campagnaro, and S. Carturan, “Dye-doped parylene-based thin film materials: Application to luminescent solar concentrators,” Solar Energy Materials and Solar Cells, Vol. 108, pp. 27-37, 2013.
[8] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light toelectricity bycis-X2bis (2,2′-bipyridyl-4,4′- dicarboxylate) ruthenium (II)charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-)
onnanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, Vol. 115, pp. 6382-6390, 1993.
[9] J. Y. Kim, T. H. Kim, D. Y. Kim, N. G. Park, and K. D. Ahn, “Novel thixotropic gel electrolytes based on dicationic bis-imidazoliumsalts for quasi-solid-state dyesensitized solar cells,” Journal of Power Sources, Vol.
175, pp. 692-697, 2008.
[10] J. H. Yum, P. Chen, M. Grätzel, and M. K. Nazeeruddin, “Recent Developments in Solid-State Dye-Sensitized Solar Cells,” Chemsuschem, Vol. 1, pp. 699-707, 2008.
[11] Jehan Akbar, Kiran Zeb, and Azhar Muhammad Naeem, “Dye-sensitized solar cells fabricated using a novel, 2, 4 DFP dye and standard N-719 and Z-907 dyes: a comparative study,” Optoelectronics and Advanced Materials: Rapid Communications, Vol. 12, pp. 168-170, 2018.
指導教授 張榮森(Rong-Seng Chang) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明