博碩士論文 103282602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.205.93.2
姓名 阮德龍(Duc-Long Nguyen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以第一原理計算對於電聲子超導體與能源轉換材料進行探究
(Explorations in the realm of phonon-mediated superconductors and energy conversion materials by first-principles calculations)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-1以後開放)
摘要(中) 本論文中,使用第一原理計算研究電聲子超導體的電子和振動性質。首先,對於鎵不同固態相的超導性進行研究。基於物件式隨機結構預測方法,我們得到了固態鎵的八個最低能量結構。物件式隨機結構方法不僅準確地預測出現有文獻中提到的最小基態結構α-Ga和其他亞穩態結構,同時也預測了新的未知結晶結構Imma-Ga。隨後,我們對於這些固態鎵的結構進行電子和電聲子耦合計算,以解釋鎵超導相其臨界溫度的大幅差異。計算結果顯示不同固態相的超導溫度可分為兩類:Tc > 5K與Tc $leq$ 1K。主要的超導溫度區別來自於其結構特徵。例如,實驗上已發現的β和γ相的超導溫度較高,其組成結構不包含鎵二聚體。然而,低超導溫度的相結構包含了共價鍵結的鎵二聚體,其費米能階的能態密度顯著減少,從而減弱了電子-聲子耦合強度,導致超導溫度顯著降低。

其次,我們研究二維材料,即單層厚的二氧化鈷以及它的固態晶體和雙層對應物的超導性。計算結果預測單層二氧化鈷具有金屬鐵磁基態。非自旋極化的計算顯示,這種2D材料在25-28 K時具有電聲子介導的超導性。單層CoO$_2$中的強電子-聲子耦合主要貢獻來自於聲學聲子,這使得CoO$_2$成為目前發表的二維材料中,最高溫超導體之一。CoO$_2$薄片可以通過剝離方法來合成,因為層中間的結合能相對較小,因此能在一般實驗條件下保持其穩定性。

我們接著使用第一原理計算對鋁(100)、(110)和(111)表面的表面能、功函數、電子-聲子耦合常數和超導轉變溫度的振盪量子尺度效應(QSE)進行研究。結果顯示這些物理特性具有顯著的振盪量子尺度效應, 與隨著材料厚度變化的受限電子能量是相關聯的。Al(111)薄膜的表面能和功函數可以由沿著[111]方向的一個費米波矢量決定的周期性阻尼正弦函數擬和的很好,其可表述為薄膜厚度的函數,而對於Al(110)薄膜,必需使用在[110]方向上的三個費米波矢量的組合來做擬和。因此,藉由固體能帶結構來定量描述這些量子尺度效應是必要的。

本論文除了電聲子超導體的相關研究外,最後一章討論在能源轉換材料領域的工作,包括熱電材料和金屬有機鈣鈦礦太陽能電池。我們首先研究溫度改變對於硒化錫(SnSe)能帶結構的影響,其中與溫度相關的晶格常數由實驗量測決定。計算結果顯示,硒化錫Cmcm相的能帶結構產生了間接到直接能隙的改變,對於瞭解這個新一代優異的熱電材料提供了新的視角。本章最後,我們使用第一原理計算對於金屬有機鈣鈦礦MAPbBr3晶體進行研究,藉由改變有機陽離子分子偶極方向而計算得到與實驗量測(STM)相符的表面結構。此部分研究顯示了理論計算可以幫助瞭解此種新興材料對於光照誘導改變其表面結構背後的潛在機制。
摘要(英) In this thesis, the electronic and vibrational properties of selected phonon-mediated superconductors are investigated using the first-principles calculations. First, the superconductivity of various bulk phases of Gallium are studied. Based on structural predictions using extit{ab-initio} random structure searching with the extit{object} (RSSWO) concept, we have obtained eight lowest energy structures of Ga. RSSWO not only captures accurately the global minima ground state $alpha$-Ga and other metastable structures reported in the literature but also reveals the unknown crystalline extit{Imma}-Ga. Subsequently, the electronic structures and electron-phonon coupling calculations of these structures were carried out to explain the large variation in superconducting transition temperatures of Ga phases. We found that The T$_c$s were separated into two categories for different phases: T$_c$ > 5K, and T$_c$ $leq$ 1K. Such major distinction is found owing to the structural feature. Some of the higher-T$_c$ structures Ga, which are experimentally identified as $eta$ and $gamma$ phase, do not contain Ga dimers. However, the low T$_c$ phases, which contains Ga dimers with the partial covalent bonding, significantly decreases the density of state at Fermi level. This weakens the electron-phonon coupling strength, leading to a considerably lower T$_c$.

Second, we explore the superconductivity in a two-dimensional lattice, the single layer thick CoO$_2$ as well as its bulk and bilayer counterpart. We show that the monolayer CoO$_2$ sheets have a metallic ferromagnetic ground state. The non-spinpolarized calculation shows that this 2D material possesses a phonon-mediated superconductivity at 25-28 K. The strong electron-phonon coupling in monolayer CoO$_2$ is mainly driven by the acoustic phonons making CoO$_2$ one of the highest-temperature superconductor in existing 2D materials. In addition, CoO$_2$ sheets can be synthesized by exfoliating bulk because of the relatively small binding energy in the interlayer while maintaining their stability under normal experimental conditions.

We then present first-principles calculations for Al(100), Al(110), and Al(111) to study the oscillatory quantum size effects (QSE) exhibited in the surface energy, work function, electron-phonon coupling constant, and superconductivity transition temperature $T_c$. These physical characteristics are found to have significant oscillatory QSE that are associated with the thickness dependence of the energies of confined electrons. A damped sinusoidal function with the periodicity determined by one Fermi Wave vector along the [111] direction can well fit the surface energy and work function of Al(111) films as a function of film thickness while it is required for the case of Al(110) films a combination of three Fermi wave vectors over the direction [110]. To describe these QSE quantitatively, a full consideration of the crystal band structure is necessary.

While the main part of the thesis relates to phonon-mediated superconductors, the final chapter discusses of the work carried out in the field of energy conversion material, including thermoelectric and metal-organic perovskite solar cells. We study the temperature dependence of band structure in SnSe whose lattice constant is determined from experiments. The indirect-direct band gap transition was found as a function of temperature in the extit{Cmcm} phase of SnSe, which gives new perspective into the understanding of this record-breaking thermoelectric material. Finally, the agreement between STM simulation and experimental work on the metal-organic perovskite solar cell MAPbBr$_3$ crystal is then presented in the last part of chapter 6. The theoretical calculations may shed some light on the underlying mechanism of illumination-induced organic cation molecule dipole orientation in this emergent material.
關鍵字(中) ★ 第一原理計算, 密度泛函理論, 密度泛函微擾理論, 電聲子超導體, 熱電, 金屬有機鈣鈦礦, 電子結構, 聲子 關鍵字(英) ★ First-principles calculations, DFT, DFPT, phonon-mediated superconductivity, thermoelectric, perovskite solar cell, band structure, phonon
論文目次 Abstract ix
Acknowledgement xi
Contents xiii
List of Figures xv
List of Tables xix
1 Introduction 1
1.1 Phonon-mediated superconductivity 1
1.2 Materials for energy conversion 3
1.3 Thesis outline 5
2 Theoretical background 7
2.1 Density functional theory 7
2.2 Density functional perturbation theory 12
2.3 Electron-phonon coupling 13
2.4 Ab-initio Random structure searching 15
3 Structural characteristic leading to the large variation in the superconducting transition temperatures of various Gallium phases 17
3.1 Introduction 18
3.2 Computational methods 18
3.3 Results and discussions 21
3.4 Conclusion 26
4 Theoretical prediction of superconductivity in monolayer CoO2 27
4.1 Introduction 27
4.2 Computational methods 30
4.3 Results and discussions 30
4.4 Conclusion 37
5 Theoretical study of quantum size effects in thin Al(100), Al(110), and Al(111) films 38
5.1 Introduction 38
5.2 Computational details 40
5.3 Quantum well state and bulk band structure 41
5.4 Surface energy and work function 47
5.5 Electron-phonon coupling 51
5.6 Phase shifts 55
5.7 Quantum well states near the Fermi level 57
5.8 Conclusion 59
6 Electronic structure of selected materials for energy conversion 60
6.1 Thermoectric materials: SnSe 60
6.2 Metal-organic Halide Perovskites: CH3NH3PbBr3 63
Bibliography 70
參考文獻 [1] D. Duan, H. Yu, H. Xie, and T. Cui, “Ab initio approach and its impact on supercon￾ductivity,” Journal of Superconductivity and Novel Magnetism, vol. 32, no. 1, pp. 53–60,2019.
[2] H. Kamerlingh Onnes, “The resistance of pure mercury at helium temperatures,” Com￾mun. Phys. Lab. Univ. Leiden, b, vol. 120, 1911.
[3] W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit,”
Naturwissenschaften, vol. 21, no. 44, pp. 787–788, 1933.
[4] L. Boeri and G. B. Bachelet, “the road to room-temperature conventional superconduc￾tivity,” Journal of Physics: Condensed Matter, 2019.
[5] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang,
Y. Q. Wang, and C. W. Chu, “Superconductivity at 93 k in a new mixed-phase y-ba-cu-o
compound system at ambient pressure,” Phys. Rev. Lett., vol. 58, pp. 908–910, Mar 1987.
[6] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas,
F. Balakirev, D. Graf, V. Prakapenka, et al., “Superconductivity at 250 k in lanthanum
hydride under high pressures,” Nature, vol. 569, no. 7757, p. 528, 2019.
[7] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V.
Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 k in lanthanum
superhydride at megabar pressures,” Phys. Rev. Lett., vol. 122, p. 027001, Jan 2019.
[8] H. Liu, I. I. Naumov, R. Hoffmann, N. Ashcroft, and R. J. Hemley, “Potential high-tc
superconducting lanthanum and yttrium hydrides at high pressure,” Proceedings of the
National Academy of Sciences, vol. 114, no. 27, pp. 6990–6995, 2017.
[9] F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate
structures in rare earth hydrides at high pressures: Possible route to room-temperature
superconductivity,” Physical review letters, vol. 119, no. 10, p. 107001, 2017.
[10] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui,
“Pressure-induced metallization of dense (h 2 s) 2 h 2 with high-t c superconductivity,”
Scientific reports, vol. 4, p. 6968, 2014.
[11] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. Shylin, “Conventional super￾conductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature, vol. 525,
no. 7567, p. 73, 2015.
[12] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical
review, vol. 108, no. 5, p. 1175, 1957.
[13] G. Eliashberg, “Interactions between electrons and lattice vibrations in a superconductor,”
Sov. Phys. JETP, vol. 11, no. 3, pp. 696–702, 1960.
[14] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid,
and M. G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical
architectures,” Nature, vol. 489, no. 7416, p. 414, 2012.
[15] J. He and T. M. Tritt, “Advances in thermoelectric materials research: Looking back and
moving forward,” Science, vol. 357, no. 6358, p. eaak9997, 2017.
[16] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid,
and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of
merit in snse crystals,” Nature, vol. 508, no. 7496, p. 373, 2014.
[17] M. Jin, Z. Chen, X. Tan, H. Shao, G. Liu, H. Hu, J. Xu, B. Yu, H. Shen, J. Xu, et al.,
“Charge transport in thermoelectric snse single crystals,” ACS Energy Letters, vol. 3,
no. 3, pp. 689–694, 2018.
[18] B. Saparov and D. B. Mitzi, “Organic–inorganic perovskites: structural versatility for
functional materials design,” Chemical reviews, vol. 116, no. 7, pp. 4558–4596, 2016.
[19] K. Frohna, T. Deshpande, J. Harter, W. Peng, B. A. Barker, J. B. Neaton, S. G. Louie,
O. M. Bakr, D. Hsieh, and M. Bernardi, “Inversion symmetry and bulk rashba effect in
methylammonium lead iodide perovskite single crystals,” Nature communications, vol. 9,
no. 1, p. 1829, 2018.
[20] R. Ohmann, L. K. Ono, H.-S. Kim, H. Lin, M. V. Lee, Y. Li, N.-G. Park, and Y. Qi,
“Real-space imaging of the atomic structure of organic–inorganic perovskite,” Journal of
the American Chemical Society, vol. 137, no. 51, pp. 16049–16054, 2015.
[21] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–
B871, Nov 1964.
[22] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation
effects,” Phys. Rev., vol. 140, no. 4A, p. A1133, 1965.
[23] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,”
Phys. Rev. Lett., vol. 45, pp. 566–569, Aug 1980.
[24] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approxima￾tions for many-electron systems,” Phys. Rev. B, vol. 23, no. 10, p. 5048, 1981.
[25] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
[26] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic
behavior,” Physical review A, vol. 38, no. 6, p. 3098, 1988.
[27] L. Ortenzi, I. Mazin, P. Blaha, and L. Boeri, “Accounting for spin fluctuations beyond
local spin density approximation in the density functional theory,” Physical Review B,
vol. 86, no. 6, p. 064437, 2012.
[28] J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct
formal properties: A step beyond the generalized gradient approximation,” Physical review
letters, vol. 82, no. 12, p. 2544, 1999.
[29] R. M. Martin, Electronic structure: basic theory and practical methods. Cambridge uni￾versity press, 2004.
[30] G. Giuliani and G. Vignale, Quantum theory of the electron liquid. Cambridge university
press, 2005.
[31] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal
properties from density-functional perturbation theory,” Rev. Mod. Phys., vol. 73, pp. 515–
562, Jul 2001.
[32] X. Gonze, “Adiabatic density-functional perturbation theory,” Physical Review A, vol. 52,
no. 2, p. 1096, 1995.
[33] G. Grimvall, The electron-phonon interaction in metals, vol. 8. North-Holland Amsterdam,
1981.
[34] F. Giustino, “Electron-phonon interactions from first principles,” Rev. Mod. Phys., vol. 89,
no. 1, p. 015003, 2017.
[35] M. Wierzbowska, S. de Gironcoli, and P. Giannozzi, “Origins of low-and high-pressure
discontinuities of t_{c} in niobium,” arXiv preprint cond-mat/0504077, 2005.
[36] P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors
reanalyzed,” Phys. Rev. B, vol. 12, no. 3, p. 905, 1975.
[37] W. L. McMillan, “Transition temperature of strong-coupled superconductors,” Phys. Rev.,
vol. 167, pp. 331–344, Mar 1968.
[38] S.-W. Wang, C.-R. Hsing, and C.-M. Wei, “Expedite random structure searching using
objects from wyckoff positions,” The Journal of chemical physics, vol. 148, no. 5, p. 054101,
2018.
[39] C. Kittel, Introduction to solid state physics. Wiley, 2005.
[40] L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 25,
no. 5, pp. 995–995, 1969.
[41] L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de ga γ,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 28,
no. 6, pp. 1974–1975, 1972.
[42] L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Ga δ,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 29,
no. 2, pp. 367–368, 1973.
[43] B. Chen, X. Duan, H. Wang, J. Du, Y. Zhou, C. Xu, Y. Zhang, L. Zhang, M. Wei, Z. Xia,
et al., “Large magnetoresistance and superconductivity in α-gallium single crystals,” npj
Quantum Materials, vol. 3, no. 1, p. 40, 2018.
[44] E. Charnaya, C. Tien, M. K. Lee, and Y. A. Kumzerov, “Superconductivity and structure
of gallium under nanoconfinement,” Journal of Physics: Condensed Matter, vol. 21, no. 45,
p. 455304, 2009.
[45] W. Buckel and R. Hilsch, “Einfluß der kondensation bei tiefen temperaturen auf den
elektrischen widerstand und die supraleitung für verschiedene metalle,” Zeitschrift für
Physik, vol. 138, no. 2, pp. 109–120, 1954.
[46] C. J. Pickard and R. Needs, “Ab initio random structure searching,” Journal of Physics:
Condensed Matter, vol. 23, no. 5, p. 053201, 2011.
[47] G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–
amorphous-semiconductor transition in germanium,” Physical Review B, vol. 49, no. 20,
p. 14251, 1994.
[48] A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic
and molecular systems,” The Journal of chemical physics, vol. 92, no. 9, pp. 5397–5403,
1990.
[49] M. de Koning, A. Antonelli, and D. A. C. Jara, “First-principles prediction of a metastable
crystalline phase of ga with cmcm symmetry,” Phys. Rev. B, vol. 80, p. 045209, Jul 2009.
[50] F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Zeitschrift
für Physik B Condensed Matter, vol. 34, no. 2, pp. 123–128, 1979.
[51] V. Heine, “Crystal structure of gallium metal,” Journal of Physics C: Solid State Physics,
vol. 1, no. 1, p. 222, 1968.
[52] I. Spagnolatti and M. Bernasconi, “Ab initio phonon dispersion relations of alpha-Ga,”
The European Physical Journal B - Condensed Matter, vol. 36, no. 1, pp. 87–90, 2003.
[53] L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in
metastable beta gallium: neutron scattering measurements,” Journal of Physics F: Metal
Physics, vol. 11, no. 11, p. 2261, 1981.
[54] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.
Chiarotti, M. Cococcioni, I. Dabo, et al., “Quantum espresso: a modular and open-source
software project for quantum simulations of materials,” J. Phys.: Condens. Matter, vol. 21,
no. 39, p. 395502, 2009.
[55] J. G. Bednorz and K. A. Müller, “Possible hight c superconductivity in the ba- la- cu- o
system,” Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–193, 1986.
[56] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev.,
vol. 108, pp. 1175–1204, Dec 1957.
[57] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconduc￾tor la [o1-x f x] feas (x= 0.05- 0.12) with t c= 26 k,” J. Am. Chem. Soc., vol. 130, no. 11,
pp. 3296–3297, 2008.
[58] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconduc￾tivity at 39 k in magnesium diboride,” Nature, vol. 410, no. 6824, p. 63, 2001.
[59] T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, “Superconductivity
in the intercalated graphite compounds c 6 yb and c 6 ca,” Nat. Phys., vol. 1, no. 1, p. 39,
2005.
[60] G. Profeta, M. Calandra, and F. Mauri, “Phonon-mediated superconductivity in graphene
by lithium deposition,” Nat. Phys., vol. 8, pp. 131–134, Jan. 2012.
[61] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal,
H. Ryu, M. T. Edmonds, H.-Z. Tsai, et al., “Characterization of collective ground states
in single-layer nbse 2,” Nature Physics, vol. 12, no. 1, p. 92, 2016.
[62] Y. Ge, W. Wan, F. Yang, and Y. Yao, “The strain effect on superconductivity in phos￾phorene: a first-principles prediction,” New J. Phys., vol. 17, no. 3, p. 035008, 2015.
[63] M. Gao, Q.-Z. Li, X.-W. Yan, and J. Wang, “Prediction of phonon-mediated supercon￾ductivity in borophene,” Phys. Rev. B, vol. 95, no. 2, p. 024505, 2017.
[64] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, et al.,
“Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals,” Nature,
vol. 546, no. 7657, p. 265, 2017.
[65] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong,
E. Schmidgall, M. A. McGuire, D. H. Cobden, et al., “Layer-dependent ferromagnetism in
a van der waals crystal down to the monolayer limit,” Nature, vol. 546, no. 7657, p. 270,
2017.
[66] X. Zhu, Y. Guo, H. Cheng, J. Dai, X. An, J. Zhao, K. Tian, S. Wei, X. C. Zeng,
C. Wu, et al., “Signature of coexistence of superconductivity and ferromagnetism in two￾dimensional nbse 2 triggered by surface molecular adsorption,” Nat. Commun., vol. 7,
p. 11210, 2016.
[67] M. U. Farooq, A. Hashmi, I. Khan, and J. Hong, “Superconductivity in two-dimensional
ferromagnetic mnb,” Scientific reports, vol. 7, no. 1, p. 17101, 2017.
[68] J. Linder and J. W. Robinson, “Superconducting spintronics,” Nature Physics, vol. 11,
no. 4, p. 307, 2015.
[69] G. G. Amatucci, “CoO2, The End Member of the LiCoO2 Solid Solution,” J. Electrochem.
Soc., vol. 143, p. 10, 1996.
[70] T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen, and H. Yamauchi, “Syn￾thesis and Properties of CoO 2 , the x = 0 End Member of the Li x CoO 2 and Na x
CoO 2 Systems,” Chem. Mater., vol. 19, pp. 5063–5066, Oct. 2007.
[71] T. Motohashi, T. Ono, Y. Sugimoto, Y. Masubuchi, S. Kikkawa, R. Kanno, M. Karppinen,
and H. Yamauchi, “Electronic phase diagram of the layered cobalt oxide system Li x CoO
2 ( 0.0 ff x ff 1.0 ),” Phys. Rev. B, vol. 80, Oct. 2009.
[72] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, “Lixcoo2 (0< x<-1): A new
cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6,
pp. 783–789, 1980.
[73] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki,
“Superconductivity in two-dimensional coo 2 layers,” Nature, vol. 422, no. 6927, p. 53,
2003.
[74] M. L. Foo, Y. Wang, S. Watauchi, H. Zandbergen, T. He, R. Cava, and N. Ong, “Charge
ordering, commensurability, and metallicity in the phase diagram of the layered na x co o
2,” Phys. Rev. Lett., vol. 92, no. 24, p. 247001, 2004.
[75] M. Onoda and A. Sugawara, “Stacking faults and metallic properties of triangular lattice
coo2 with a three-layer structure,” Journal of Physics: Condensed Matter, vol. 20, no. 17,
p. 175207, 2008.
[76] K.-W. Lee and W. E. Pickett, “Na x Co O 2 in the x → 0 regime: Coupling of structure
and correlation effects,” Phys. Rev. B, vol. 72, Sept. 2005.
[77] Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles lattice dynamics of Na Co O 2,”
Phys. Rev. B, vol. 70, Oct. 2004.
[78] P. Zhang, W. Luo, V. H. Crespi, M. L. Cohen, and S. G. Louie, “Doping effects on the
electronic and structural properties of CoO 2 : An LSDA + U study,” Phys. Rev. B,
vol. 70, Aug. 2004.
[79] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., “Advanced capabilities for materials
modelling with quantum espresso,” J. Phys.: Condens. Matter, vol. 29, no. 46, p. 465901,
2017.
[80] N. Marzari, D. Vanderbilt, A. De Vita, and M. Payne, “Thermal contraction and disor￾dering of the al (110) surface,” Phys. Rev. Lett., vol. 82, no. 16, p. 3296, 1999.
[81] T. Sohier, M. Calandra, and F. Mauri, “Density functional perturbation theory for gated
two-dimensional heterostructures: Theoretical developments and application to flexural
phonons in graphene,” Phys. Rev. B, vol. 96, no. 7, p. 075448, 2017.
[82] J.-A. Yan, W. Y. Ruan, and M. Y. Chou, “Phonon dispersions and vibrational properties
of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory,”
Phys. Rev. B, vol. 77, p. 125401, Mar 2008.
[83] A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer mos2 and ws2,”
Phys. Rev. B, vol. 84, p. 155413, Oct 2011.
[84] J. Dai, Z. Li, J. Yang, and J. Hou, “A first-principles prediction of two-dimensional su￾perconductivity in pristine B2c single layers,” Nanoscale, vol. 4, no. 10, p. 3032, 2012.
[85] L. Boeri, M. Calandra, I. I. Mazin, O. V. Dolgov, and F. Mauri, “Effects of magnetism
and doping on the electron-phonon coupling in bafe 2 as 2,” Physical Review B, vol. 82,
no. 2, p. 020506, 2010.
[86] E. Margine, H. Lambert, and F. Giustino, “Electron-phonon interaction and pairing mech￾anism in superconducting ca-intercalated bilayer graphene,” Sci. Rep., vol. 6, p. 21414,
2016.
[87] A. Y. Liu, I. Mazin, and J. Kortus, “Beyond eliashberg superconductivity in mgb 2:
anharmonicity, two-phonon scattering, and multiple gaps,” Phys. Rev. Lett., vol. 87, no. 8,
p. 087005, 2001.
[88] M. Kawamura, R. Akashi, and S. Tsuneyuki, “Anisotropic superconducting gaps in yni 2
b 2 c: A first-principles investigation,” Phys. Rev. B, vol. 95, no. 5, p. 054506, 2017.
[89] M. Lüders, M. Marques, N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza,
S. Massidda, and E. Gross, “Ab initio theory of superconductivity. i. density functional
formalism and approximate functionals,” Phys. Rev. B, vol. 72, no. 2, p. 024545, 2005.
[90] M. Marques, M. Lüders, N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza,
E. Gross, and S. Massidda, “Ab initio theory of superconductivity. ii. application to ele￾mental metals,” Phys. Rev. B, vol. 72, no. 2, p. 024546, 2005.
[91] http://sctk.osdn.jp.
[92] T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, “van der Waals
Bonding in Layered Compounds from Advanced Density-Functional First-Principles Cal￾culations,” Phys. Rev. Lett., vol. 108, June 2012.
[93] V. R. Cooper, “Van der waals density functional: An appropriate exchange functional,”
Phys. Rev. B, vol. 81, no. 16, p. 161104, 2010.
[94] K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, “Higher-accuracy
van der waals density functional,” Phys. Rev. B, vol. 82, no. 8, p. 081101, 2010.
[95] O. A. Vydrov and T. Van Voorhis, “Nonlocal van der waals density functional made
simple,” Phys. Rev. Lett., vol. 103, no. 6, p. 063004, 2009.
[96] R. Sabatini, T. Gorni, and S. de Gironcoli, “Nonlocal van der waals density functional
made simple and efficient,” Phys. Rev. B, vol. 87, no. 4, p. 041108, 2013.
[97] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier,
I. E. Castelli, A. Cepellotti, G. Pizzi, et al., “Two-dimensional materials from high￾throughput computational exfoliation of experimentally known compounds,” Nat. Nanotechnol., vol. 13, no. 3, p. 246, 2018.
[98] K. Budde, E. Abram, V. Yeh, and M. C. Tringides, “Uniform, self-organized, seven-step
height p b/s i (111)-(7× 7) islands at low temperatures,” Phys. Rev. B, vol. 61, no. 16,
p. R10602, 2000.
[99] M. Hupalo, S. Kremmer, V. Yeh, L. Berbil-Bautista, E. Abram, and M. C. Tringides,
“Uniform island height selection in the low temperature growth of pb/si (111)-(7× 7),”
Surf. Sci., vol. 493, no. 1, pp. 526–538, 2001.
[100] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, “Correlation
between quantized electronic states and oscillatory thickness relaxations of 2d pb islands
on si (111)-(7× 7) surfaces,” Phys. Rev. Lett., vol. 86, no. 22, p. 5116, 2001.
[101] L. Aballe, C. Rogero, P. Kratzer, S. Gokhale, and K. Horn, “Probing interface electronic
structure with overlayer quantum-well resonances: Al/si (111),” Phys. Rev. Lett., vol. 87,
no. 15, p. 156801, 2001.
[102] L. Aballe, C. Rogero, and K. Horn, “Quantum size effects in ultrathin epitaxial mg films
on si (111),” Phys. Rev. B, vol. 65, no. 12, p. 125319, 2002.
[103] Z. Zhang, Q. Niu, and C.-K. Shih, ““electronic growth”of metallic overlayers on semi￾conductor substrates,” Phys. Rev. Lett., vol. 80, no. 24, p. 5381, 1998.
[104] F. Schulte, “A theory of thin metal films: electron density, potentials and work function,”
Surf. Sci., vol. 55, no. 2, pp. 427–444, 1976.
[105] T.-C. Chiang, “Photoemission studies of quantum well states in thin films,” Surf. Sci.
Rep., vol. 39, no. 7, pp. 181–235, 2000.
[106] I. B. Altfeder, K. A. Matveev, and D. M. Chen, “Electron fringes on a quantum wedge,”
Phys. Rev. Lett., vol. 78, no. 14, p. 2815, 1997.
[107] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, “Quantum electronic stability
and spectroscopy of ultrathin pb films on si (111) 7× 7,” Phys. Rev. B, vol. 66, no. 19,
p. 195410, 2002.
[108] H. Hong, C.-M. Wei, M. Y. Chou, Z. Wu, L. Basile, H. Chen, M. Holt, and T.-C. Chi￾ang, “Alternating layer and island growth of pb on si by spontaneous quantum phase
separation,” Phys. Rev. Lett., vol. 90, no. 7, p. 076104, 2003.
[109] T. Valla, M. Kralj, A. Siber, M. Milun, P. Pervan, P. D. Johnson, and D. P. Woodruff,
“Oscillatory electron-phonon coupling in ultra-thin silver films on v(100),” J. Phys.: Con￾dens. Matter, vol. 12, no. 28, p. L477, 2000.
[110] I. Y. Sklyadneva, R. Heid, K.-P. Bohnen, P. M. Echenique, and E. V. Chulkov, “Mass
enhancement parameter in free-standing ultrathin pb (111) films: The effect of spin-orbit
coupling,” Phys. Rev. B, vol. 87, no. 8, p. 085440, 2013.
[111] R. Otero, A. L. Vázquez de Parga, and R. Miranda, “Observation of preferred heights in
pb nanoislands: A quantum size effect,” Phys. Rev. B, vol. 66, no. 11, p. 115401, 2002.
[112] P. S. Kirchmann, M. Wolf, J. H. Dil, K. Horn, and U. Bovensiepen, “Quantum size effects
in pb/ si (111) investigated by laser-induced photoemission,” Phys. Rev. B, vol. 76, no. 7,
p. 075406, 2007.
[113] P. S. Kirchmann, L. Rettig, X. Zubizarreta, V. M. Silkin, E. V. Chulkov, and U. Boven￾siepen, “Quasiparticle lifetimes in metallic quantum-well nanostructures,” Nat. Phys.,
vol. 6, no. 10, p. 782, 2010.
[114] J. Kim, C. Zhang, J. Kim, H. Gao, M.-Y. Chou, and C.-K. Shih, “Anomalous phase
relations of quantum size effects in ultrathin pb films on si (111),” Phys. Rev. B, vol. 87,
no. 24, p. 245432, 2013.
[115] R.-Y. Liu, A. Huang, C.-C. Huang, C.-Y. Lee, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T.
Jeng, I. Matsuda, and S.-J. Tang, “Deeper insight into phase relations in ultrathin pb
films,” Phys. Rev. B, vol. 92, no. 11, p. 115415, 2015.
[116] X. Liu and C.-Z. Wang, “Interplay between quantum confinement and surface effects in
thickness selective stability of thin ag and eu films,” J. Phys.: Condens. Matter, vol. 29,
no. 18, p. 185504, 2017.
[117] X. Zubizarreta, E. V. Chulkov, I. P. Chernov, A. S. Vasenko, I. Aldazabal, and V. M.
Silkin, “Quantum-size effects in the loss function of pb (111) thin films: An ab initio
study,” Phys. Rev. B, vol. 95, no. 23, p. 235405, 2017.
[118] L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Zhang, “Novel
growth of ag islands on si (111): Plateaus with a singular height,” Phys. Rev. Lett.,
vol. 82, no. 1, p. 129, 1999.
[119] Y. Z. Wu, C. Y. Won, E. Rotenberg, H. W. Zhao, F. Toyoma, N. V. Smith, and Z. Q.
Qiu, “Dispersion of quantum well states in cu/co/cu (001),” Phys. Rev. B, vol. 66, no. 24,
p. 245418, 2002.
[120] J. J. Paggel, C. M. Wei, M. Y. Chou, D.-A. Luh, T. Miller, and T.-C. Chiang, “Atomic￾layer-resolved quantum oscillations in the work function: Theory and experiment for ag/
fe (100),” Phys. Rev. B, vol. 66, no. 23, p. 233403, 2002.
[121] M. Altman, W. Chung, Z. He, H. Poon, and S. Tong, “Quantum size effect in low energy
electron diffraction of thin films,” Applied Surf. Sci., vol. 169, pp. 82–87, 2001.
[122] R. Zdyb and E. Bauer, “Spin-dependent quantum size effects in the electron reflectivity of
ultrathin ferromagnetic crystals,” Surf. Rev. Lett., vol. 9, no. 03n04, pp. 1485–1491, 2002.
[123] Y. Jiang, K. Wu, Z. Tang, P. Ebert, and E. Wang, “Quantum size effect induced dilute
atomic layers in ultrathin al films,” Phys. Rev. B, vol. 76, no. 3, p. 035409, 2007.
[124] I. Sarria, C. Henriques, C. Fiolhais, and J. M. Pitarke, “Slabs of stabilized jellium:
Quantum-size and self-compression effects,” Phys. Rev. B, vol. 62, pp. 1699–1705, Jul
2000.
[125] Y. Han and D.-J. Liu, “Quantum size effects in metal nanofilms: Comparison of an
electron-gas model and density functional theory calculations,” Phys. Rev. B, vol. 80,
no. 15, p. 155404, 2009.
[126] J. Pitarke and A. Eguiluz, “Jellium surface energy beyond the local-density approximation:
Self-consistent-field calculations,” Phys. Rev. B, vol. 63, no. 4, p. 045116, 2001.
[127] M. Seidl, J. P. Perdew, M. Brajczewska, and C. Fiolhais, “Metal-cluster ionization energy:
A profile-insensitive exact expression for the size effect,” Phys. Rev. B, vol. 55, no. 19,
p. 13288, 1997.
[128] C. M. Horowitz, C. Proetto, and J. Pitarke, “Exact-exchange kohn-sham potential, surface
energy, and work function of jellium slabs,” Phys. Rev. B, vol. 78, no. 8, p. 085126, 2008.
[129] C. M. Horowitz, L. A. Constantin, C. Proetto, and J. Pitarke, “Position-dependent
exact-exchange energy for slabs and semi-infinite jellium,” Phys. Rev. B, vol. 80, no. 23,
p. 235101, 2009.
[130] L. A. Constantin, L. Chiodo, E. Fabiano, I. Bodrenko, and F. Della Sala, “Correlation
energy functional from jellium surface analysis,” Phys. Rev. B, vol. 84, no. 4, p. 045126,
2011.
[131] L. A. Constantin and J. M. Pitarke, “Adiabatic-connection-fluctuation-dissipation ap￾proach to long-range behavior of exchange-correlation energy at metal surfaces: A numer￾ical study for jellium slabs,” Phys. Rev. B, vol. 83, no. 7, p. 075116, 2011.
[132] E. Engel and J. P. Perdew, “Theory of metallic clusters: Asymptotic size dependence of
electronic properties,” Phys. Rev. B, vol. 43, pp. 1331–1337, Jan 1991.
[133] C. Fall, N. Binggeli, and A. Baldereschi, “Deriving accurate work functions from thin-slab
calculations,” J. Phys.: Condens. Matter, vol. 11, no. 13, p. 2689, 1999.
[134] A. Kiejna, J. Peisert, and P. Scharoch, “Quantum-size effect in thin al (110) slabs,” Surf.
Sci., vol. 432, no. 1, pp. 54–60, 1999.
[135] P. J. Feibelman, “Static quantum-size effects in thin crystalline, simple-metal films,” Phys.
Rev. B, vol. 27, no. 4, p. 1991, 1983.
[136] S. Ciraci and I. P. Batra, “Theory of the quantum size effect in simple metals,” Phys. Rev.
B, vol. 33, no. 6, p. 4294, 1986.
[137] J. C. Boettger, “Persistent quantum-size effect in aluminum films up to twelve atoms
thick,” Phys. Rev. B, vol. 53, no. 19, p. 13133, 1996.
[138] W. Ming, S. Blair, and F. Liu, “Quantum size effect on dielectric function of ultrathin
metal film: a first-principles study of al (1 1 1),” J. Phys.: Condens. Matter, vol. 26,
no. 50, p. 505302, 2014.
[139] E. Wachowicz and A. Kiejna, “Bulk and surface properties of hexagonal-close-packed be
and mg,” J. Phys.: Condens. Matter, vol. 13, no. 48, p. 10767, 2001.
[140] K. F. Wojciechowski and H. Bogdanów, “Quantum size effects of ultrathin simple metal
layers on the example of lithium,” Surf. Sci., vol. 397, no. 1, pp. 53–57, 1998.
[141] P. J. Feibelman, “Erratum: Ab initio step and kink formation energies on pb (111)[phys.
rev. b 62, 17020 (2000)],” Phys. Rev. B, vol. 65, no. 12, p. 129902(E), 2002.
[142] G. Materzanini, P. Saalfrank, and P. J. D. Lindan, “Quantum size effects in metal films:
Energies and charge densities of pb (111) grown on cu (111),” Phys. Rev. B, vol. 63, no. 23,
p. 235405, 2001.
[143] C. M. Wei and M. Y. Chou, “Theory of quantum size effects in thin pb (111) films,” Phys.
Rev. B, vol. 66, no. 23, p. 233408, 2002.
[144] C. M. Wei and M. Y. Chou, “Quantum size effect in pb(100) films: Critical role of crystal
band structure,” Phys. Rev. B, vol. 75, p. 195417, May 2007.
[145] C. J. Fall, N. Binggeli, and A. Baldereschi, “Work functions at facet edges,” Phys. Rev.
Lett., vol. 88, no. 15, p. 156802, 2002.
[146] J. Henk, A. M. N. Niklasson, and B. Johansson, “Magnetism and anisotropy of ultrathin
ni films on cu (001),” Phys. Rev. B, vol. 59, no. 14, p. 9332, 1999.
[147] A. Ernst, J. Henk, M. Lüders, Z. Szotek, and W. M. Temmerman, “Quantum-size effects
in ultrathin ag films on v (001): Electronic structure and photoelectron spectroscopy,”
Phys. Rev. B, vol. 66, no. 16, p. 165435, 2002.
[148] N. E. Singh-Miller and N. Marzari, “Surface energies, work functions, and surface relax￾ations of low-index metallic surfaces from first principles,” Phys. Rev. B, vol. 80, no. 23,
p. 235407, 2009.
[149] E. Engel, “Exact exchange plane-wave-pseudopotential calculations for slabs: Extending
the width of the vacuum,” Phys. Rev. B, vol. 97, no. 15, p. 155112, 2018.
[150] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calcu￾lations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996.
[151] P. E. Blöchl Phys. Rev. B, vol. 50, p. 17953, 1994.
[152] G. Kresse and D. Joubert Phys. Rev. B, vol. 59, p. 1758, 1999.
[153] J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic structure of solids’91, vol. 11.
Akademie Verlag, Berlin, 1991.
[154] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formal￾ism,” Phys. Rev. B, vol. 41, no. 11, p. 7892, 1990.
[155] M. Methfessel and A. T. Paxton, “High-precision sampling for brillouin-zone integration
in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989.
[156] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal
properties from density-functional perturbation theory,” Rev. Mod. Phys., vol. 73, no. 2,
p. 515, 2001.
[157] J. Paggel, T. Miller, and T.-C. Chiang, “Quantum-well states as fabry-perot modes in a
thin-film electron interferometer,” Science, vol. 283, no. 5408, pp. 1709–1711, 1999.
[158] W. Li, L. Huang, R. G. S. Pala, G.-H. Lu, F. Liu, J. W. Evans, and Y. Han, “Thickness￾dependent energetics for pb adatoms on low-index pb nanofilm surfaces: First-principles
calculations,” Phys. Rev. B, vol. 96, no. 20, p. 205409, 2017.
[159] F. K. Sculte, “Energies and fermi level of electrons in thin size-quantized metal films,”
Physica Status Solidi B Basic Research, vol. 79, pp. 149–153, 1977.
[160] P. B. Allen, “Neutron spectroscopy of superconductors,” Phys. Rev. B, vol. 6, no. 7,
p. 2577, 1972.
[161] F. Giustino, M. L. Cohen, and S. G. Louie, “Electron-phonon interaction using wannier
functions,” Phys. Rev. B, vol. 76, no. 16, p. 165108, 2007.
[162] S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, “Epw: Electron–phonon coupling,
transport and superconducting properties using maximally localized wannier functions,”
Comput. Phys. Commun., vol. 209, pp. 116–133, 2016.
[163] L. N. Oliveira, E. K. U. Gross, and W. Kohn, “Density-functional theory for supercon￾ductors,” Phys. Rev. Lett., vol. 60, pp. 2430–2433, Jun 1988.
[164] E. K. U. G. M. Lüders, “Scdft2005,” Phys. Rev. B, vol. 72, p. 024545, 2005.
[165] G. Q. Huang, “Electronic structures, surface phonons, and electron-phonon interactions of
al (100) and al (111) thin films from density functional perturbation theory,” Phys. Rev.
B, vol. 78, no. 21, p. 214514, 2008.
[166] T. Miller, M. Y. Chou, and T.-C. Chiang, “Phase relations associated with one-dimensional
shell effects in thin metal films,” Phys. Rev. Lett., vol. 102, p. 236803, Jun 2009.
[167] L. Yang, Z.-G. Chen, M. Hong, G. Han, and J. Zou, “Enhanced thermoelectric performance
of nanostructured bi2te3 through significant phonon scattering,” ACS applied materials &
interfaces, vol. 7, no. 42, pp. 23694–23699, 2015.
[168] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High￾performance photovoltaic perovskite layers fabricated through intramolecular exchange,”
Science, vol. 348, no. 6240, pp. 1234–1237, 2015.
[169] S. Bhattacharya, A. Bohra, R. Basu, R. Bhatt, S. Ahmad, K. Meshram, A. Debnath,
A. Singh, S. K. Sarkar, M. Navneethan, et al., “High thermoelectric performance of (agcrse
2) 0.5 (cucrse 2) 0.5 nano-composites having all-scale natural hierarchical architectures,”
Journal of Materials Chemistry A, vol. 2, no. 40, pp. 17122–17129, 2014.
[170] W.-S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and
Z. Ren, “Thermoelectric property studies on cu-doped n-type cuxbi2te2. 7se0. 3 nanocom￾posites,” Advanced Energy Materials, vol. 1, no. 4, pp. 577–587, 2011.
[171] Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, “High thermoelectric
performance in pbte due to large nanoscale ag2te precipitates and la doping,” Advanced
Functional Materials, vol. 21, no. 2, pp. 241–249, 2011.
[172] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of
electronic bands for high performance bulk thermoelectrics,” Nature, vol. 473, no. 7345,
p. 66, 2011.
[173] Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Es￾farjani, et al., “Enhancement of thermoelectric figure-of-merit by resonant states of alu￾minium doping in lead selenide,” Energy & Environmental Science, vol. 5, no. 1, pp. 5246–
5251, 2012.
[174] A. T. Duong, V. Q. Nguyen, G. Duvjir, S. Kwon, J. Y. Song, J. K. Lee, J. E. Lee, S. Park,
T. Min, J. Lee, et al., “Achieving zt= 2.2 with bi-doped n-type snse single crystals,” Nature
communications, vol. 7, p. 13713, 2016.
[175] D. Ibrahim, J.-B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Sem￾primoschnig, A. Dauscher, and B. Lenoir, “Reinvestigation of the thermal properties of
single-crystalline snse,” Applied Physics Letters, vol. 110, no. 3, p. 032103, 2017.
[176] P.-C. Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y. Chen, and A. Rao, “The
intrinsic thermal conductivity of snse,” Nature, vol. 539, no. 7627, p. E1, 2016.
[177] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented￾wave method,” Physical Review B, vol. 59, no. 3, p. 1758, 1999.
[178] M. Shishkin and G. Kresse, “Self-consistent g w calculations for semiconductors and insu￾lators,” Physical Review B, vol. 75, no. 23, p. 235102, 2007.
[179] R. Godby, M. Schlüter, and L. Sham, “Self-energy operators and exchange-correlation
potentials in semiconductors,” Physical Review B, vol. 37, no. 17, p. 10159, 1988.
[180] H. Goldsmid and J. Sharp, “Estimation of the thermal band gap of a semiconductor from
seebeck measurements,” Journal of electronic materials, vol. 28, no. 7, pp. 869–872, 1999.
[181] P.-C. Wei, S. Bhattacharya, Y.-F. Liu, F. Liu, J. He, Y.-H. Tung, C.-C. Yang, C.-R.
Hsing, D.-L. Nguyen, C.-M. Wei, et al., “Thermoelectric figure-of-merit of fully dense
single-crystalline snse,” ACS Omega, vol. 4, no. 3, pp. 5442–5450, 2019.
[182] K. Kuroki and R. Arita, ““pudding mold”band drives large thermopower in naxcoo2,”
Journal of the Physical Society of Japan, vol. 76, no. 8, pp. 083707–083707, 2007.
[183] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica,
vol. 34, no. 1, pp. 149–154, 1967.
[184] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature,
vol. 517, no. 7535, p. 476, 2015.
[185] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade,
J. F. Watts, Z. Xu, et al., “Enhanced photovoltage for inverted planar heterojunction
perovskite solar cells,” Science, vol. 360, no. 6396, pp. 1442–1446, 2018.
[186] P. E. Blöchl, “Projector augmented-wave method,” Physical review B, vol. 50, no. 24,
p. 17953, 1994.
[187] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set,” Computational materials science, vol. 6,
no. 1, pp. 15–50, 1996.
[188] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio
parametrization of density functional dispersion correction (dft-d) for the 94 elements
h-pu,” The Journal of chemical physics, vol. 132, no. 15, p. 154104, 2010.
[189] J. Neugebauer and M. Scheffler, “Adsorbate-substrate and adsorbate-adsorbate interactions of na and k adlayers on al (111),” Physical Review B, vol. 46, no. 24, p. 16067,
1992.
[190] H.-C. Hsu, B.-C. Huang, S.-C. Chin, C.-R. Hsing, D.-L. Nguyen, M. Schnedler, R. Sankar,
R. E. Dunin-Borkowski, C.-M. Wei, C.-W. Chen, et al., “Photodriven dipole reordering:
Key to carrier separation in metalorganic halide perovskites,” ACS nano, 2019.
指導教授 魏金明 陳賜原(Ching-Ming Wei Szu-yuan Chen) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明