博碩士論文 103322012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.235.191.87
姓名 林耿億(Keng-Yi Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 直接基礎隔震支承橋梁之被動控制實驗與分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 橋梁藉由隔震系統延長自然振動週期,以降低上部結構引致之地震力,但其缺點為上部結構可能產生大位移反應,實務上可採用結構控制技術降低其位移反應。當隔震橋梁之工址地質優良時,其基礎型式可同時採用直接基礎,大地震發生時,直接基礎可能發生搖擺現象。本研究進行一系列振動台試驗,以直接基礎隔震支承橋梁為目標,探討直接基礎產生搖擺時,加裝被動控制元件之減震效應。由實驗數據與數值分析比對,確定數值模型之準確性後,建立一座五跨連續隔震支承系統梁橋,加裝黏滯性阻尼器,藉由參數分析求得其最佳配置方式與阻尼係數。研究結果顯示,黏滯性阻尼器,可有效降低橋梁反應,但阻尼係數過大,阻尼力增大,直接基礎搖擺現象放大,反而導致負面之影響,因此實務應用時,阻尼係數不宜過大,方可發揮最大之減震效能。
摘要(英) The isolation system extend the period of the bridge and reduce the earthquake force which caused by bridge superstructure. However, the shortage is isolation system would lead to the displacement of the superstructure would be increased. In practice, the control system is chosen to decrease the displacement effect. If the bridge is built on the excellent soil properties, the foundation type could be chosen as direct foundation. As the result, when the earthquake happened, rocking would be caused on direct foundation. In this research, based on direct foundation of isolator bridges, a series of shaking table test was done. The goal of this experiment is to find the effect of adding passive control system when direct foundation shaking. Then, the accuracy of the numerical model would be considered by compare experimental data and numerical analysis. After make sure the accuracy of the numerical model, a five-span continuous isolated bridge modal which added viscous dampers would be built. Then, the best configuration and damper coefficient would be found by parameter analysis. The research result shows that viscous dampers could reduce the effect of the bridge. However, if damper coefficient is too large lead to damping force increase, direct foundation rocking would become serious. It would contribute to negative impact. As the result, appropriate damper coefficient could provide optimal influence.
關鍵字(中) ★ 橋梁
★ 隔震支承
★ 直接基礎搖擺
★ 黏滯性阻尼
★ 振動台試驗
關鍵字(英) ★ bridge
★ isolation bearing
★ rocking mechanism
★ viscous damper
★ shaking table test
論文目次 目 錄
摘 要……………………………………………………..……………….I
Abstract………….……………………………………………………….II
誌 謝…………………………………………………...……………….III
目 錄..…………………………………………………..…..…………..IV
表 目 錄………………………………………………..………...……VII
圖 目 錄………………………………………………..…….………IX
第一章 緒論………………………………………...…..……………….1
1.1 研究動機與目的………………………………..………………1
1.2 文獻回顧……………………………………..…………………3
1.2.1 隔震支承…………………………….………………….3
1.2.2 控制系統…………………...……………..…………….4
1.2.3 直接基礎搖擺機制……………….…………………….6
1.3 論文架構…….…………………………………………………9
第二章 隔減震系統理論…..………….………………….…………..10
2.1 滾動單擺支承………………………..……………..…………10
2.2 黏滯性阻尼器………………….…………………..………..12
2.3 基礎搖擺…………….………………………………………13
第三章 實驗橋梁之數值分析模型……………….………………...…20
3.1 向量式有限元素法……………………….….………………20
3.2 橋梁分析模型……………………...………….………………21
3.2.1 隔震支承………………………………..………...…..22
3.2.2 黏滯性阻尼器………………………………….……..22
3.2.3 土壤彈簧勁度………………………………………23
第四章 振動台試驗…………………………....………………..……..26
4.1 實驗模型介紹……………………………………….………26
4.1.1 實驗試體………………………………………...……26
4.1.2 黏滯性阻尼器之力學行為…………………………27
4.2 實驗規劃…………………………………………………….30
4.2.1 實驗量測儀器與設備……………………………….30
4.2.2 輸入震波…………………………………………….31
4.3 實驗結果.……………………………………………………...32
4.3.1 實驗試體系統識別….………………………………..32
4.3.2 試驗結果…………………………………….………..33
4.3.3 實驗結果與數值分析比對…………………………...37
第五章 橋梁實例分析與探討………………………………………167
5.1 目標橋梁……………………………………………………167
5.2 數值分析模型…………………………………….……...…167
5.2.1 上部結構模擬…….………………………….…...…168
5.2.2 下部結構模擬…….……………………………...…168
5.2.3 支承系統模擬………..….…………………...…...…169
5.2.4 基礎與土壤彈簧………………………...…........…169
5.2.5 極限載重容量…………………………………….…173
5.2.6 被動控制系統……………………………………….176
5.3 橋梁實例分析與探討……………………………………....177
5.3.1 阻尼器配置位置…….……...…………………….....177
5.3.2 阻尼係數……...…………………………..………....178
5.3.3 基礎尺寸…………………………………………….182
5.3.4 小結……………………………………………….…184
第六章 結論與未來展望…………………………………...….…..…226
6.1 結論……………………………………………………...…226
6.2 未來展望……………………………………………………..228
參考文獻………………………………………………..…….……….229
參考文獻 [1] 唐治平、李維森等(2001),「橋梁結構耐震、隔震及減震技術之應用研究」,行政院公共工程委員會研究報告第123號。
[2] Abrishambaf, A. and Ozay, G. (2010) “Effects of isolation damping and stiffness on the seismic behaviour of structures”, World Scientific and Engineering Academy and Society (WSEAS), pp. 76-81.
[3] Robinson, W. H. (1982) “Lead-Rubber Hysteretic Bearings Suitable For Protecting Structures During Earthquakes”, Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 593-604.
[4] Mokha, A. S., Constantinou, M. C., Reinhorn , A. M. and Zayas, V. (1991) “Experimental study of friction pendulum isolation system” , Journal of Structure Engineering, ASCE, Vol. 117, pp. 1201-1217.
[5] Wang, Y. P., Chung, L. L., and Liao, W. H. (1998) “Seismic response analysis of bridges isolated with friction pendulum bearings”, Earthquake Engineering and Structural Dynamics, Vol. 27, pp. 1069-1093.
[6] Lee, G.C. and Liang, Z. (2003) “A Sloping Surface Roller Bearing and its lateral Stiffness Measurement”, In Proceedings of the 19th US-Japan Bridge Engineering Workshop,Tsukuba, Japan.
[7] Tsai, M. H., Wu, S. Y., Chang, K. U. and Lee, G. C. (2007) “Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings”, Engineering Structures, Vol. 29, pp. 694-702.
[8] 李維森 (1997),「線性液體阻尼器於橋梁耐震工程上之應用研究」,博士論文,國立中央大學土木工程研究所,中壢。
[9] 曾義軒 (2004),「黏性阻尼器於橋梁隔減震之應用研究」,碩士論文,國立台灣科技大學營建工程系,台北。
[10] 陳柏全 (2012),「隔震橋梁之最佳化結構控制」,博士論文,國立中央大學土木工程研究所,中壢。
[11] Whiiaker, A. S. , Constantinou, M. C. and Kircher. C. A. (1996) “Seismic rehabilitation using supplemental damping systems” World Conference on Earthquake Engineering. pp.219-226
[12] Spencer, B. F. and Nagarajaiah, S. (2003) “State of the Art of Structural Control. ”Journal of Structural Engineering, ASCE,129(7), pp.845-856
[13] Constantinou, M. C., Soong, T. T. and Dargush, G. F., (1998) “ Passive Energy Dissipation Systems For Structural Design And Retrofit”, MCEER Monograph, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York
[14] Constantinou, M. C. and Symanss, M. D (1992), “Experimental and analytical investigation of seismic response of structure with supplemental fluid viscous dampers ”National Center for Earthquake Engineering Research , Technical Report NCEER-92-0032, New York
[15] Constantinou, M. C. and Symanss, M. D (1993), “Experimental study seismic response of buildings with supplemental fluid damping” The Structural Design of Tall Buildings, Vol. 2, pp. 93-132
[16] Constantinou, M. C. (1994) “Application of fluid viscous dampers to earthquake resistant design” National Center for Earthquake Engineering and Research; pp. 73–80
[17] Constantinou, M. C., Symans, M. D, Tsopelas, P., and Taylor, D. P. (1993) “Fluid viscous dampers in application of seismic energy dissipation and seismic isolation” Proc., ATC-17-1 Seminar of Seismic Isolation, Passive Energy Dissipation, and Active Control, 2,581-591.
[18] Taylor, D. P. (1992) “Fluid Dampers for Applications of Seismic Energy Dissipation and Seismic Isolation” Eleventh World Conference on Earthquake Engineering Research, State University of New York at Buffalo
[19] Whittaker, A.S.,Constantinou, M.C. and Kircher C.A. (1996),“Seismic Rehabilitation Using Supplemental Damping Systems” Eleventh World Conference on Earthquake Engineering, paper No. 430,ISBN:0-08-042822-3
[20] Housner, G. W. (1963), “The Behavior of Inverted Pendulum Structures During Earthquakes”, Bulletin of the Seismological Socity of America, Vol. 53, No. 2, pp. 403-417.
[21] Meek, J. W. (1978), “Dynamic Response of Tipping Core Building”, Earthquake Engineering and Structural Dynamics, Vol. 6, pp. 437-454.
[22] Priestley, M. J. N., Evison, R. J. and Carr, A. J. (1978), “Seismic Response of Structures Free to Rock on Their Foundations”, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 11, No. 3, pp. 141-150.
[23] Yim, C. S., Chopra, A. K. and Panzien, J. (1980), “Rocking Response of Rigid Blocks to Earthquake”, Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 565-587.
[24] Psycharis, I. N. and Jennings, P. C. (1983), “Rocking of Slender Rigid Bodies Allowed to Uplift”, Earthquake Engineering and Structural Dynamics, Vol. 11, pp. 57-76.
[25] Chopra, A. K. and Yim, S. C. S. (1985), “Simplified Earthquake Analysis of Structures with Foundation Uplift”, Journal of Structural Engineering, ASCE, Vol. 111, No. 4, pp. 906-930.
[26] Sakellaraki, D., Watanabe, G. and Kawashima, K. (2005), “Experimental Rocking Response of Direct Foundation of Bridges,” Second International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, March7-8, pp. 497-504.
[27] Sakellaraki, D. and Kawashima, K. (2006), “Effectiveness of Seismic Rocking Isolation of Bridges Based on Shake Table Test,” First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3-8.
[28] Kawashima, K., Watanabe, G., Sakeraraki, D. and Nagai, T. (2005), “Rocking Isolation of Bridge Foundations,” 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, June 13-16.
[29] Anastasopoulos, I., Loli, M., Georgarakos, T. and Drosos, V. (2013), “Shaking Table Testing of Rocking—Isolated Bridge Pier on Sand”, Journal of Earthquake Engineering., Vol. 17, pp. 1-32.
[30] Kawashima, K. and Nagai, T. (2006), “Effectiveness of Rocking Seismic Isolation on Bridge,” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 12-13.
[31] Apostolou, M., Gazetas, G. and Garini, E. (2006), “Seismic Response of Slender Rigid Structures with Foundation Uplifting,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp.642-654.
[32] Raychowdhury, P. and Hutchinson, T. C. (2009), “Performance Evaluation of a Nonlinear Winkler-Based Shallow Foundation Model using Centrifuge Test Results,” Earthquake Engng Struct. Dyn., Vol. 38, pp. 679-698.
[33] Deng, L., Kutter, B. L. and Kunnath, S. K. (2012), “Centrifuge Modeling of Bridge Systems Designed for Rocking Foundations,” J. Geotech. Geoenviron. Eng., Vol. 137, No. 3, pp. 335-344.
[34] Hung, H. H., Liu, K.Y., Ho, T. H. and Chang K. C. (2010), “An Experimental Study on the Rocking Response of Bridge Piers with Spread Footing Foundations,” Earthquake Engineering and Structural Dynamics, Vol. 40 pp. 749-769.
[35] 洪曉慧、張國鎮、劉光晏、何姿慧(2008),「直接基礎之搖擺實驗與分析」,國家地震工程研究中心,報告編號:NCREE-08-040。
[36] 黃敏彥 (2013),「橋梁直接基礎搖擺之極限分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[37] 周煌鈞 (2015),「橋梁直接基礎搖擺試驗」,碩士論文,國立中央大學土木工程研究所,中壢。
[38] Kawashima, K. and Unjoh, S. (1991), “Overturning of Rigid Foundation Resting on Ground with Insufficient Yield Strength,” Civil Engineering Journal, Japan, Vol. 33, No. 3, pp. 54-59.
[39] Kawashima, K., Unjoh, S. and Mukai, H. (1994), “Inelastic Rocking of Direct Foundation During an Earthquake,” Civil Engineering Journal, Japan, Vol. 36, No. 7, pp. 50-55.
[40] Taylor Devices, Inc. http://www.taylordevices.com/
[41] Allotey, N. and Naggar EI, M, H.(2003),”Analytical Moment-Rotation Curves for Rigid Foundations Base on Winkler Model,” Soil Dynamics and Earthquake Engineering, Vol. 23, pp. 367-381.
[42] 日本道路協會 (1997),「道路橋の耐震設計に関すゐ資料」,丸善株式會社,東京。
[43] 日本道路協會 (2012),「道路橋示方書IV 下部構造編」,丸善株式會社,東京。
[44] Raychowdhury, P. (2008), Nonlinear Winkler-Based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures”, Doctoral Thesis, Department of Civil and Environmental Engineering, University of California, San Diego.
指導教授 李姿瑩 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明