博碩士論文 103322037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:173 、訪客IP:13.58.82.79
姓名 林奕佐(Yi-Zuo Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 台灣反應性粒料之反應行為及抑制研究
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2014年ASTM發佈ASTM C1778降低鹼質粒料反應危害風險指引,主要係對鹼質粒料反應的檢測、減緩之方法,以使危害性膨脹發生之可能降至最低。其中降低鹼-氧化矽反應的方法有方法有二,其一為以ASTM C1567或ASTM C1293進行試驗之性能基準法,其二為處方法,而此兩法對於台灣反應性粒料之有效性仍有待驗證。
本文針對常用之台灣砂石進行ASTM C1260及ASTM C1293試驗,以評估ASTM C1567是否適用於特定粒料防制對策之決定。此外,針對台灣典型之反應性粒料,分別以性能基準法及處方法決定輔助膠結材(Supplementary Cementitious Material, SCM)之取代量。在性能基準法方面,利用ASTM C1567試驗,決定台電飛灰及中聯爐石粉之有效取代量。在處方法方面,根據粒料反應等級,考慮一般性結構物及使用環境,決定SCM取代量,並比較兩法決定SCM取代量。
本文研究結果顯示:(1)台灣常用粒料可採用ASTM C1567進行試驗,且獲致偏保守之防制措施。(2)針對台灣典型反應性粒料及台灣常見用之SCM,採用處方法得到的取代量較採用性能基準法之取代量為高,亦即利用處方法決定的防制措施較性能基準法保守,故在台灣採用處方法防制鹼質粒料反應為保守且有效之途徑。
摘要(英) ASTM C1778 was introduced in 2014 to reduce the risk of deleterious alkali-aggregate reaction in Concrete. Two types of approaches, performance-based and prescriptive, are used for selecting appropriate preventive measures.
In this thesis, ASTM C1293 and ASTM C1260 are conducted with aggregates from major basins in Taiwan to validate if ASTM C1567 is applicable to evaluate the SCM replacement amount under the requirement of performance-based approach in ASTM C1778. Three types of aggregates are evaluated with ASTM C1778 to get the requied amounts of SCM replacement with both performance-based and prescriptive approaches.
Results show that ASTM C1567 can be applied with most aggregates in Taiwan and conservative mitigating measures are suggested. For common types of SCM in Taiwan, the suggested value from prescriptive approach gives higher values than performance-based approach. Therefore, prescriptive approach is effective and applicable in Taiwan for AAR mitigation.
關鍵字(中) ★ 鹼質粒料反應
★ 鹼-氧化矽反應
★ 輔助膠結材
★ ASTM C1260
★ ASTM C1293
★ ASTM C1567
★ ASTM C1778
關鍵字(英) ★ Alkali-Aggregate Reaction
★ Alkali-Silica Reaction
★ SCM
★ ASTM C1260
★ ASTM C1293
★ ASTM C1567
★ ASTM C1778
論文目次 圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍 2
1.3 研究方法 2
1.4 論文內容及架構 3
第二章 文獻回顧 4
2.1 鹼質粒料反應(ALKALI-AGGREGATE REACTION)概論 4
2.1.1 定義 4
2.1.2 鹼-氧化矽反應發生機制 5
2.1.3 鹼-氧化矽反應之要素 7
2.2 鹼質粒料反應之特徵 15
2.2.1 特定的開裂(Cracking)模式 15
2.2.2 膨脹導致變形、相對位移 20
2.2.3 表面爆出(Pop-outs) 22
2.2.4 變色和膠體 24
2.3 預防鹼質粒料反應之方法 28
2.4 輔助膠結材 32
2.4.1 輔助膠結材對混凝土膨脹之影響 32
2.4.2 SCM控制ASR之機制 36
2.5 鹼質粒料試驗方法 39
2.5.1 ASR之粒料反應性試驗方法 39
2.5.2 ASR之抑制成效評估方法 44
2.5.3 試驗比較 44
2.6 降低鹼質粒料反應危害風險指引 (ASTM C1778 ) 47
2.6.1 處方法詳細流程 49
第三章 研究方法 56
3.1 實驗規畫 56
3.2 實驗材料 58
3.2.1 水泥 58
3.2.2 粒料 58
3.2.3 輔助膠結材 61
3.3 實驗方法及步驟 64
3.3.1 加速水泥砂漿棒試驗 (ASTM C1260) 64
3.3.2 加速水泥砂漿棒膨脹抑制試驗 (ASTM C1567) 68
3.3.3 混凝土角柱試驗(ASTM C1293) 69
3.3.4 膨脹量測量 75
3.3.5 微觀分析 76
第四章 試驗結果與討論 78
4.1 試驗結果 78
4.1.1 ASTM C1260、ASTM C1293試驗結果 78
4.1.2 ASTM C1567試驗結果 94
4.1.3 微觀分析結果 101
4.2 ASTM C1293、ASTM1260試驗結果之解讀 107
4.2.1 試驗結果與現地鹼質粒料案例之比較 108
4.2.2 試驗結果依粒料來源位置進行比較 111
4.2.3 試驗結果與前人試驗數值之比較 113
4.2.4 所選粒料對ASTM C1567之適用性 117
4.3 ASTM C1567試驗結果之解讀 124
4.3.1 建議使用之SCM最低取代量 124
4.3.2 不同SCM之試驗結果差異 127
4.4 ASTM C1778中性能基準法與處方法之比較 129
4.4.1 以和平溪、南澳溪所產粒料進行比較 131
4.4.2 以海岸山脈安山岩進行比較 132
第五章 結論與建議 133
5.1 結論 133
5.2 參考文獻 135
參考文獻 1. 田永銘等,「臺灣東部公路橋梁混凝土鹼質粒料反應傷害之研究」,交通部公路總局材料試驗所研究報告,中壢(2016)。
2. 田永銘、鐘翊展、盧育辰、林育民、張顥薰、葉東航、林宏哲、郭偉民、鄭峰麟,「高鐵里程 TK249+814~TK266+671 墩柱混凝土裂縫現況調查及裂縫分級期末報告」,台灣高速鐵路股份有限公司(2012)。
3. 王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」, 行政院國科會專題研究報告,NSC78-0410-E006-20,共 98 頁(1989)。
4. 彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
5. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
6. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
7. 劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,博士論文,國立中央大學土木工程研究所,中壢(2003)。
8. 邵國瑋,「卜作嵐材料抑制鹼-骨材反應之成效評估」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
9. 鄒睿嘉,「台灣東部骨材的鹼反應檢測與詮釋」,碩士論文,國立中央大學土木工程學系,中壢(2007)。
10. 官毅明,「鹼-矽膠體的形貌與組成」,碩士論文,國立中央大學土木工程學系,中壢(2011) 。
11. 郭偉民,「延遲性鈣礬石形成與鹼-骨材反應引致劣化機制」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
12. 鄒睿嘉,「水化早期溫度對延遲性鈣礬石形成之影響」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
13. ACI, “ACI Concrete Terminology,” American Concrete Institute, ACI CT-13 (2013).
14. ASTM, “Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete,” ASTM, C1778-16, United States (2016).
15. ASTM, “Standard Speci?cation for Concrete Aggregates,” ASTM, C33-13, United States (2013).
16. ASTM, “Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” ASTM, C1293 ? 08b, United States (2008).
17. ASTM, “Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” ASTM, C1567-13, United States (2013).
18. ASTM, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” ASTM, C1260 – 14, United States (2014).
19. AASHTO, “Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction.” PP65-11, American Association of State and Highway Transportation Officials, Washington, DC, 24 p (2011).
20. C. Zhang, A. Wang, M. Tang, B. Wu, N. Zhang, In?uence of aggregate size and aggregate size grading on ASR expansion, Cem. Concr. Res. 29 1393–1396 (1999).
21. CSA, "Standard Practice to Identify Degree of Alkali-Reactivity of Aggregates and to Identify Measures to Avoid Deleterious Expansion in Concrete.” CSA A23.2-27A. A23.2-09 - Test methods and standard practices for concrete, Canadian Standards Association, Mississauga, Ontario, Canada (2009).
22. Diamond, S. a nd Penko, M., “Alkali silica reaction processes: the conversion of cement alkalis to alkali hydroxide.” Durability of Concrete – G.M. Idorn International Symposium, (Ed. Jens Holm), ACI SP-131, American Concrete Institute, Detroit, 153-168 (1992).
23. Diamond, S., "Alkali reactions in concrete - Pore solution effects." Proceedings of the 6th International Conference on Alkalis in Concrete, (Eds. G.M. Idorn and Steen Rostam), Danish Concrete Association, Copenhagen, 155-166 (1983).
24. Duchesne, J., Marc-Andre’, B., “Long-term effectiveness of supplementary cementing materials against alkali–silica reaction,” Cement and Concrete Research, Vol. 31, pp. 1057-1063(2001).
25. Feng, X., Thomas, M.D.A., Bremner, T.W., Balcom, B.J. and Folliard, K.J., “Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review,” Cement and Concrete Research, Vol. 35, pp. 1789-1796 (2005).
26. Feng, X., Thomas, M.D.A., Bremner, T.W., Balcom, B.J. and Folliard, K.J.,“Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review.” Cement and Concrete Research, 35: 1789-1796 (2005).
27. French, W. J., “Reactions Between Aggregates and Cement Paste anInterpretation of The Pessimum.” Q. J. eng. Geol., London, Vol. 13,pp. 231-247 (1980).
28. Glasser, F.P. and Marr, J.,“The alkali binding potential of OPC and blended cements.” Il Cemento, 82: 85-94 (1985).
29. Idorn, G. M., “Durability of Concrete Structure in Denmark, Danish,” Technical Press, Copenhagen (1967).
30. Ineson, P. R., “Siliceous Components in Aggregates,” Cement & Composites, Vol.12, pp.185-190 (1990).
31. Jan Lindgard, Ozge Andic-Cak?r, Isabel Fernandes, Terje F. Ronning, Michael D.A. Thomas, “Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing,” Cement and Concrete Research, Volume 42, Issue 2, Pages 223–243(2012).
32. Maas, A.J., Ideker, J.H. and Juenger, M.C.G., “Alkali silica reactivity of agglomerated silica fume.” Cement and Concrete Research, 37: 166–174 (2007).
33. Maas, A.J., Ideker, J.H. and Juenger, M.C.G.,“Alkali silica reactivity of agglomerated silica fume.” Cement and Concrete Research, 37: 166–174 (2007).
34. McCoy, W.J. and Caldwell, A.G.,“New approach to inhibiting alkali-aggregate expansion.” Journal of the American Concrete Institute, 22(9): 693-706 (1951).
35. Michael Thomas, “The effect of supplementary cementing materials on alkali-silica reaction: A review,” Cement and Concrete Research, Volume 41, Issue 12, Pages 1224–1231(2011).
36. Nishibayashi, S., Kuroda, T. and Inoue, S.,Expansion Characteristics of AAR in Concrete by Autoclave Method. (Ed. A. Shayan), Melbourne, Australia, 370-376 (1996).
37. Nixon, P.J. and Page, C.L.,"Pore solution chemistry and alkali aggregate reaction." Concrete Durability, Katherine and Bryant Mather International Conference, (Ed. J.M. Scanlon), ACI SP-100, Vol. 2, American Concrete Institute, Detroit, 1833-1862 (1987).
38. Nixon, P.J. and Sims, I, “Alkali Aggregate Reaction - Accelerated Tests Interim Report and Summary of National Specifications.” Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete, Vol. 2, The Concrete Society, Slough, 731-738 (1992).
39. Oberholster, R.E. and Davies, G.,“An Accelerated Method for Testing the Potential Reactivity of Siliceous Aggregates.” Cement and Concrete Research, 16: 181–189 (1986).
40. Pedneault, A., “Development of testing and analytical procedures for the evaluation of the residual potential of reaction, expansion, and deterioration of concrete affected by ASR.” M.Sc. Memoir, Laval University, Quebec City, Canada, 133 p (1996).
41. S. Diamond, N. Thaulow, A study of expansion due to alkali–silica reaction asconditioned by the grain size of the reactive aggregate, Cem. Concr. Res. 4 591–607 (1974).
42. Shayan, A., “Prediction of alkali reactive potential of some Australian aggregate and correlation with service performance,”ACI Materials Journal, Vol. 89, p.13-23 (1992).
43. Stanton, T.E.,“Expansion of concrete through reaction between cement and aggregate.”Proceedings of the American Society of Civil Engineers, 66(10): 1781-1811 (1940).
44. Stokes, D.B., Wang, H.H. and Diamond, S., “A lithium-based admixture for ASR control that does not increase the pore solution pH.” Proceedings of the 5th CANMET/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, (Ed. V.M. Malhotra), ACI SP-173, American Concrete Institute, Detroit, 855-867 (1997).
45. The Concrete Society, “Non-structural cracks in concrete,” The Concrete Society, Technical Report 22, Camberley, UK. (1982).
46. Thomas, M.D.A, Fournier, B, and Folliard, K.J., “Alkali aggregate reactivity (AAR) facts book,” Federal Highway Administration Report, United States (2013).
47. Thomas, M.D.A, Fournier, B, and Folliard, K.J., “Alkali aggregate reactivity AAR workshops for engineers and practitioners,” Federal Highway Administration Report, United States (2013).
48. Thomas, M.D.A, Fournier, B, and Folliard, K.J., “Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction,” FHWA Report HIF-09-001, Federal Highway Administration, Washington, DC, 21 pp (2008).
49. Thomas, M.D.A, Fournier, B, and Folliard, K.J., “Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction,” Federal Highway Administration Report, United States (2008).
50. Thomas, M.D.A, Fournier, B, and Folliard, K.J., “Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete: Rationale for the AASHTO PP65 Prescriptive Approach,” Federal Highway Administration Report, United States (2012).
51. Thomas, M.D.A, Fournier, B, Rivard, P, Drimalas, T, Garber, S.I, and Folliard, K.J., “Methods for Evaluating and Treating ASR -Affected Structures-Results of Field Applica tion and Demonstration Projects II,” Federal Highway Administration Report, United States (2013).
52. Transportation Research Board, Control of Cracking in Concrete-State of the Art, Transportation Research Board, Washington (2006).
53. Tremblay, C., Berube, M-A., Fournier, B., Thomas, M.D.A. and Folliard, K.F.,“Effectiveness of lithium-based products in concrete made with Canadian reactive aggregates.” ACI Materials Journal, 104(2): 195-205 (2007).
54. Tremblay, C., Berube, M-A., Fournier, B., Thomas, M.D.A. and Folliard, K.F., “Effectiveness of lithium-based products in concrete made with Canadian reactive aggregates.” ACI Materials Journal, 104(2): 195-205 (2007).
指導教授 田永銘(Yun-ming Tien) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明