博碩士論文 103322041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.225.26.154
姓名 高嘉偉(Jia-Wei Gao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 葉理岩體之超音波速探討
(Study of ultrasonic velocity in foliated rocks)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文使用乾點式超音波試驗儀,以不同入射角量測天然岩石之超音波速,並針對具葉理之天然片岩以波速極座標圖呈現不同葉理夾角之波速異向性。參數研究方面,以不同波速、厚度互層排列方式作為參數變因,引用司乃爾定律(Snell’s law)計算不同模型葉理夾角之波速,以了解各項變因對波速極座標圖之影響。最後,本文以層狀互層材料模擬天然片岩之波速極座標圖,擬根據研究結果,探討葉理岩石波速異向性之成因及機制。
摘要(英) The compositions, arrangement and mineral crystal orientation of rocks are affected by precipitation, earth stress or temperature... physical and chemical reactions during the diagenesis process. Hence, the mechanical behaviors (i.e. strength, elastic modulus, Poisson′s ratio…) usually accompany anisotropy properties, such as: schist or jointed rock mass. For geotechnical engineering, the rock mechanical anisotropy plays an important role for tunnel, slope designs, and their constructions. Non-destructive ultrasonic testing can evaluate strength and deformability of rock material, which provides in-situ judgment basis.
This paper presents Snell’s law to investigate wave propagation behavior of anisotropic rocks. This paper analyzes P-wave anisotropy of natural rocks from previous studies, and observes 3 different shapes of P-wave anisotropy, includes circular, ellipse, dumbbell-shaped, eye shape. Parametric study is addressed for determining the shapes of P-wave anisotropy. Finally, this paper will clarify the cause of P-wave anisotropy according to the parametric study.
關鍵字(中) ★ 葉理岩體
★ 縱波異向性
★ 橫向等向性岩石
★ 超音波
關鍵字(英) ★ foliated rocks
★ P-wave anisotropy
★ transversely isotropic rock
★ ultrasonic
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究方法與目的 2
1-3 論文架構 2
1-4 研究流程圖 3
第二章 文獻回顧 4
2-1 異向性 4
2-2 超音波性質概述 10
2-3 岩石與超音波波速相關性質 20
2-4 橫向等向性材料與超音波之相關研究 32
第三章 實驗規劃 52
3-1 試驗方法 52
3-2 超音波速試驗 52
3-3 本文模式推導 60
第四章 結果分析與討論 71
4-1 天然岩石超音波速量測 71
4-2 參數研究 89
4-3 理論模擬與天然岩石超音波速之比較 115
第五章 結論與建議 123
5-1 結論 123
5-2 建議 125
參考文獻 126
附錄A 超音波儀器校正塊之量測波速值 129
附錄B 天然岩石之各角度超音波速值 130
參考文獻 [1] 王麒瑋,?層狀材料波傳行為之研究?,碩士論文,國立中央大學土木工程學系,中壢(2009)。
[2] 胡庭秉,「超音波儀器之組裝及異向性岩石之超音波特性」,碩士論文,國立交通大學土木工程系,新竹(1995)。
[3] 張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,國立中央大學土木工程系,中壢(2006)。
[4] Amadei, B., Rogers, J. D., and Goodman, R. E., “Elastic constants and tensile strength of anisotropic rocks,” International Society for Rock Mechanics, Vol. 1, pp. 189–196 (1983).
[5] Barla, G., “Rock anisotropy: theory and laboratory testing,” Rock mechanics, Vol. 165, pp. 131–169 (1974).
[6] Birch, F., “The velocity of compressional waves in rocks to 10 kilobars: 2.,” Journal of Geophysical Research, Vol. 66, Issue 7, pp. 2199–2224 (1961).
[7] Babu?ka, V., “A method for investigating the elastic anisotropy on spherical rock samples,” Journal of Geophysics, Vol. 33, pp. 289–291 (1967).
[8] Jech, J., Babuska, V., and Pros, Z., “Quantitative correlation of velocity anisotropy with the distribution of micro cracks in rocks,” Union Czech, Prague (1985).
[9] Chan, J., and Douglas, R., “Elastic anisotropy of a metamorphic rock sample of the Canadian Shield in Northeastern Alberta,” Rock Mechanics and Rock Engineering, Vol. 48, pp. 1369–1385 (2015).
[10] Hakala, M., Kuula, H., and Hudson, J.A.,“Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gnesiss, Finland,” International Journal of Rock Mechanics and Mining Sciences, Vol. 44, pp. 14-46 (2007).
[11] Kahraman, S., “A correlation between P-wave velocity, number of joints and Schmidt hammer rebound number,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 729-733 (2001).
[12] Kahraman, S., “Estimating the direct P-wave velovity value of intact rock from indirect laboratory measurements,” International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 101-104 (2002).
[13] Kahraman, S., and Yeken, T.,“Determination of physical properties of carbonate rocks from P-wave velocity,” Bull. Eng. Geol. Environ, Vol. 67, pp. 277-281 (2008).
[14] Lekhnitskii, S.G., Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco (1963).
[15] Song, I., and Suh, M., “Effects of foliation and microcracks on ultrasonic anisotropy in retrograde ultrama?c and metamorphic rocks at shallow depths,” Journal of Applied Geophysics, Vol. 109, pp. 27-35 (2014).
[16] Thomsen, L., “Weak elastic anisotropy,” Geophysics, Vol. 51, NO. 10, pp. 1954-1966 (1986).
[17] Vajdova, V., P?ikryl, R., Pros, Z., and Klima K., “The effect rock fabric on P-wave velocity distrubtion in amphibolites,” Physis of the Earth and Planetary Interiors, Vol. 114, pp. 39-47 (1999).
[18] Vernik, L., and Nur, A., “Ultrasonic velocity and aisotropy of hydrocarbon source rocks,” Geophysics, Vol. 57, No. 5, pp. 727-735 (1992).
[19] Yasar, E., and Erdogan, Y., “Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 871-875 (2004).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明