博碩士論文 103322044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.224.30.118
姓名 李承哲(CHENG-ZHE LI)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 回填與緩衝材料之動態強度
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests★ Effect of Vegetation on The Stability of Sandy Slope by Centrifuge Modeling
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前對於放射性廢料的處置方法中較普遍的方法為利用深層處置場,封存放射性廢料。放射性廢料於地下深層處置中,常利用緩衝材料阻隔放射性核種外移,膨潤土具有特殊吸水性、高膨脹及低滲透性等特性,適合當作緩衝材料及回填材料。回填隧道的材料,多使用膨潤土與現地開挖之岩屑或礫石混和後回填,回填材料的功能為避免處置隧道成為地下水通道。在施工妥善的狀況下,可能造成回填材料體積產生變化的因素,主因是地震導致液化。另外亦考慮緩衝材料因地下水的侵蝕,使得緩衝材料整體的單位重降低,地震發生時可能有液化之虞。本研究對含有不同膨潤土與礫石混和比例之回填材料試體及不同統體單位重之緩衝材料試體,進行不排水之動力三軸試驗,以不同軸差應力振幅進行動態試驗,探討不同反覆剪應力作用下,回填材料及緩衝材料動態強度之變化趨勢。
所有試驗中,試體之超額孔隙水壓激發量皆不明顯,甚至無激發孔隙水壓,激發量皆未到達試體所受的有效圍壓,無液化現象發生。對於飽和單位重為20 kN/m3之回填材料試體,膨潤土含量越多之試體,隨著動態加載作用,所造成的軸向變形量較小,試驗中回填材料試體皆未因變形量過大而破壞的現象發生。飽和單位重為20 kN/m3及18 kN/m3緩衝材料試體,在動態加載下,所造成的雙軸向應變量亦不大,試體未因過大變形而破壞;飽和單位重16 kN/m3之緩衝材料試體,在動態加載下造成的雙軸向應變量變化較為明顯,雖然雙軸向應變量隨著反覆加載作用未超過5%,但試體會因累積之殘餘應變量過大而破壞。
摘要(英) Buffer materials are used to retard the migration of radionuclides emitted from high level wastes in a repository. Bentonite is the primary candidate for the buffer materials at the present day, because it has special water absorption, high expansion and low permeability. The materials used to backfill tunnel are mostly with bentonite and excavated in situ rock debris or gravels. After construction, liquefaction is the main cause of the backfill material volume generated change. In addition, the volume of buffer material would change because of the erosion of groundwater. It reduces the bulk density of backfill material, liquefaction would occur during earthquake. In this research, program undrained dynamical triaxial tests will be conducted to the backfill materials with different proportions of bentonite and gravel and buffer matrial with different bulk density to estimate cyclic strength of backfill and buffer materials.
The excess pore water pressure excitations of specimens were not significant during the tests, even without water pressure excitations. There is no liquefaction occurred in all of tests. For the backill material with saturated unit weight of 20 kN/m3, axial displacement of specimens decreases with the increase of bentonite contents during cyclic loading. But axil deformations of backfill mater specimens were too small to cause failures. Buffer materials with saturated unit weight of 20 kN/m3 and 18 kN/m3, double amplitude axial strains of speciems were not significant during the tests, specimens were not faiulure. For buffer materials with saturated unit weight of 16 kN/m3, double amplitude axial strains of speciems were significant during cyclic loading. Although the amplitudel strain of specimens did not reach 5%, specimens were failure due to excessive accumulation of residual strain.
關鍵字(中) ★ 動力三軸試驗
★ 緩衝材料
★ 礫石
關鍵字(英) ★ Dynamic triaxial test
★ Buffer material
★ Gravel
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 最終處置場設計概 3
2-2 緩衝材料之功能與特性 4
2-3 動力三軸試驗基本原理 5
2-4 土壤液化機制與定義 6
2-5 反覆荷重下破壞準則之定義 7
2-6 影響液化之因素 8
2-6-1試體準備方式 8
2-6-2反覆加載作用頻率 8
2-6-3相對密度 9
2-6-4有效圍壓 9
2-6-5地下水條件 10
2-6-6土壤顆粒特性 11
2-6-7細粒料含量 12
第三章 試驗步驟與試驗設備 30
3-1 試驗土樣 30
3-2 飽和重模試體製作方法 30
3-3 試驗儀器及相關設備 32
3-3-1三軸室 33
3-3-2控制系統 33
3-3-3量測系統 34
3-3-4動力系統 35
3-3-5訊號擷取系統 36
3-4 試驗步驟 36
3-4-1 儀器校正 36
3-4-2 試體準備階段 36
3-4-3 試體飽和階段 37
3-4-4 試驗壓密 37
3-4-5 動態試驗階段 38
3-4-6 液化後再壓密階段 38
3-4-7 資料處理階段 39
第四章 試驗結果與討論 48
4-1試驗規劃 48
4-2資料處理方法 48
4-3試驗結果 49
4-4動態荷載作用下反覆及殘餘應變 50
4-4-1回填材料試體膨潤土含量之影響 50
4-4-2緩衝材料單位重之影響 50
4-5超額孔隙水壓之激發 51
4-6應力路徑 52
4-7剪力模數與剪應變之關係 53
第五章 結論與建議 96
5-1 結論 96
5-2 建議 98
參考文獻 99
參考文獻 1. ASTM C29, “Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate,” American Society for Testing and Materials, West Conshocken, Pennsylvania, USA.
2. ASTM D5311-13, “Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil1,” American Society for Testing and Materials, West Conshocken, Pennsylvania, USA.
3. Bouferra, R., and Shahrour, I., "Influence of fines on the resistance to liquefaction of a clayey sand," Proceedings of the ICE-Ground Improvement, Vol.8, No.1, pp 1-5(2004).
4. Della, N., Arab, A., Belkhatir, M., Missoum, H., “Identification of the behavior of the Chlef sand to static liquefaction,” Comptes Rendus Mécanique, pp.282-290(2009).
5. El Mohtar, C. S., Bobet, A., Santagata, M. C., Drnevich, V. P., and Johnston, C. T., “Liquefaction mitigation using bentonite suspensions,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.8, pp1369-1380(2012).
6. Holtz, Robert D., and William D. Kovacs, “An introduction to geotechnical engineering,” No. Monograph(1981).
7. Hyodo, M.,Hyde, A.F.L.,Aramaki, N.,and Nakata, Y., “Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses,” Soils and Foundations, Vol. 42,No. 3,pp. 63-76 (2002).
8. Ishibashi, I., Shrif, M A., and Cheng, W. L., “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and Foundations, Vol. 22, No.1, pp.37-48 (1982).
9. Ishihara, K., “Stability of natural deposits during earthquakes,” Proceedings of the eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco/12-16 August 1985, pp. 321-376(1985).
10. Johannesson, L. E., Borgesson, L., and Sandén, T., “Compaction of bentonite blocks,” SKB TR 95-19, Svensk Kärnbränslehantering AB(1995).
11. JNC, “H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japanese,” Japanese Nuclear Cycle Development Institute (2000).
12. Kokusho, T., Tanaka, Y., Kawai, T., Kudo, K., Suzuki, K., Tohda, S., and Abe, S., “Case study of rock debris avalanche gravel liquefied during 1993 Hokkaido-Nansei-Oki Earthquake.” Soils Foundation, Vol. 35, No. 3, pp.83–95(1995).
13. Kokusho, T., Hara, T., and Hiraoka, R., “Undrained Shear Strength of Granular Soils with Different Particle Gradation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 6, pp. 621-629(2004).
14. Lee, K. L. and Fitton, J. A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp. 71-95 (1969).
15. Ladd, R.S., “Specimen preparation and liquefaction of sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. GT10, pp. 1180-1184 (1974).
16. Obermeier, S. F., “Use of liquefaction-induced features for paleoseismic analysis,” l Engineering Geology, Vol. 44, pp. 1-76(1996).
17. Peacock, W. H., and Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708(1968).
18. Polito, C. P., and Martin, J. R., “Effect of nonplastic fines on the liquefaction resistance of sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 5, pp. 408-415(2001).
19. Seed, H. B., and Lee, K. L., “Liquefaction of saturated sands during cyclic loading, ” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
20. Seed, H. B. and Idriss, I. M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, pp.1249-1273 (1971).
21. Seed, H. B., “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104. (1976).
22. Svensk Kärnbränslehantering AB, “Design, production and initial state of the buffer,” SKB TR-10-15, Svensk Kärnbränslehantering AB(2010).
23. Svensk Kärnbränslehantering AB., “Design, production and initial state of the backfill and plugin deposition tunnels,” SKB TR-10-16, Svensk Kärnbränslehantering AB (2010).
24. Sitharam, T.G., Govinda Raju, L., and Srinivasa Murthy, B.R., "Cyclic and monotonic undrained shear response of silty sand from Bhuj region in Indian, "ISET Journal of earthquake technology, Vol.41, No.2-4, pp249-260(2004).
25. Takaji, K. and Taniguchi, W., “Dynamic properties of buffer material,” Japanese Nuclear Cycle Development Institute (1999).
26. Tang, X. W., Ling Ma, and Qi Shao. "Experimental Investigation on Effect of Bentonite Content to the Liquefaction Potential in Saturated Sand," Electronic Journal of Geotechnical Engineering, Vol.18, pp. 1409-1417(2013).
27. Xenaki, V.C., and Athanasopoulos, G.A., “Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam-Laboratory test results,” Soil Dynamics and Earthquake Engineering, Vol. 28, pp. 605-620 (2008).
28. Yoshimi, Y., and Oh-oka, H., "Influence of degree of shear stress reversal on the liquefaction potential of saturated sand," Soils and Foundations, Vol. 15, No. 3, pp 27-40(1975).
29. Yoshimi, Y., Tanaka, K., and Tokimatsu, K., “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162(1989).
30. Zand, B., Tu, W., Amaya, P., Wolfe, W., and Butalia, T., “An experimental investigation on liquefaction potential and post-liquefaction shear strength of impounded fly ash,” Journal Fuel, Vol.88, pp.1160-1166(2009).
31. 王欣婷,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
32. 李豐博,「土壤動態性質研究」,交通部運輸研究所港灣技術研究中心(1986)。
33. 李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
34. 施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,國立成功大學土木工程研究所,台南(2009)。
35. 核能研究所,「我國用過核燃料深層地質處置概念討論會」,行政院原子能委員會核能研究所(2002)。
36. 孫家雯,「砂土細粒界定對液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文,台北(2001)。
37. 陳榮嵩,「土石壩壩心材料之動態性質研究」,碩士論文,國立中興大學土木工程研究所,台中(1991)。
38. 陳銘鴻,「土壤液化成因、災害與復建」,臺灣之活動斷層與地震災害研討會,第107-123頁(2002)。
39. 陳婷,「水泥改良砂土之動靜態剪力強度特性」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
40. 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
41. 郭瓦力、張德金、于桂香,沈陽化工學院,「多功能原料-膨潤土」,遼寧化工,第28 卷,第4 期(1999)。
42. 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54 頁,(2000)。
43. 崔學奇、吕憲俊、周國華,「膨潤土的性能及其應用」,中國非金属礦工業導刊,第2期,第6-9頁(2000)。
44. 曾正豐,「不等向壓密飽和砂土之動態變形行為」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
45. 韓秀山,「各種膨潤土的性能及其综合利用」,化工科技市場,第5期,第4-7頁(2004)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2016-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明