博碩士論文 103322087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.173.214.227
姓名 徐曼涵(Man-Han Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 分析降雨及不透水面對台南水患發生之影響
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 淹水是台灣最常見的自然災害,在都市地區造成許多經濟損失和人身安全的傷亡, 更甚者,文獻指出都市的不透水鋪面透過改變水文循環的過程,會影響洪水的發生。本 研究之研究區台南市自 2001 年起淹水災情頻傳,伴隨著逐年成長的都市及不透水鋪面 面積,淹水在台南造成的損失將更加重大。為了評估台南市洪水發生之機率,本研究使 用邏輯迴歸分析不透水鋪面之面積及降雨參數(總雨量、延時和降雨強度)與歷史淹水事 件之關聯性,其中 80%之淹水記錄用於邏輯迴歸訓練,另外 20%則用於計算 AUC 以進 行邏輯迴歸之檢核驗證。為取得降雨參數及不透水鋪面面積所使用的資料包括 2001、 2004、2007、2010 和 2014 年共五年之中央氣象局降雨測站記錄及 Landsat 衛星影像, 其中不透水鋪面面積透過分析衛星影像,以 SVM 進行影像分類取得。從土地覆蓋圖之 分析結果發現,台南市之不透水鋪面面積於 2001 年至 2014 年約成長 108 平方公里,其 中 2001 年至 2007 年間有較顯著之成長,約成長 75 平方公里,為全部成長的 69%,高 成長之地區分別是安南、永康、仁德、歸仁、新市及新化等區,這些區域主要分佈在原 台南市之都市外圍,同時亦為過去發生淹水頻率較高之地區。邏輯迴歸之結果顯示,不 透水鋪面和降雨都和淹水發生有顯著的正向關聯,AUC (Area Under Curve)值則介於 0.83 至 0.88 間,顯示本研究所建立之邏輯迴歸模式,可用於評估台南市之淹水潛勢。綜合上 述研究成果,本研究之成果可為台南市提供都市成長及淹水災害防治等資訊,供政府或 都市規劃相關人員使用。
摘要(英) Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. Moreover, in urban areas, literatures indicated that impervious surface area (ISA) changes the hydrological procceses and therefore affects the occurrence of flood. The Tainan City, in the southwest part of Taiwan, have suffered from damages of flood for years, and is selected as the study area because of the high flood susceptibility with significant urban development in the past two decades. To estimate the likelihood of flood occurrence, which can be affected by ISA and rainfall, this study uses logistic regression to analyze the relationship between rainfall variables (total rainfall, rainfall duration and rainfall intensity), ISA and historical flood events. 80% of the historical flood events were used for the logistic regression training while the remaining 20% were utilized for model validation. Specifically, rainfall gauge records of 2001, 2004, 2007, 2010 and 2014 associated with 169 flood events were collected and mapped, and Landsat images were used to map land cover and ISA with SVM (support vector machine) classifier. The land cover maps show that the urban area increases around 108 km2 from 2001 to 2014, and the urban expansion is relatively significant during the period between 2001 and 2007, with area approximately 75km2. Saptially, the expansion areas are mostly appeared over Annan, Yongkang, Rende, Guiren, Xinshi and Xinhua districts, which mainly located at the fringe of original urban areas, as well as areas highly susceptible to flood. From the logistic regression analysis, the result shows that rainfall variables and ISA are effectively and significantly correlated to the flood occurrence. For model validation, the AUC (Area Under Curve) values range from 0.83 to 0.88 showing the well applicability of the model for flood susceptibility assessement. According to the findings, the study explores the relationship between urban development and flood in Tainan City, which can be usfur for flood hazard prevention and mitigation practices.
關鍵字(中) ★ 淹水
★ 邏輯迴歸
★ 衛星影像
★ 不透水鋪面
★ 台南市
關鍵字(英) ★ flood
★ Logistic regression
★ Landsat imagery
★ impervious surface area
★ urban growth
論文目次 第一章 緒論 1
1-1 研究背景和動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 都市淹水之相關研究 3
2-2 台南淹水現況及治水政策 5
2-3 Landsat衛星影像於不透水鋪面判釋之應用 10
2-4 小結 12
第三章 研究區域與研究資料 13
3-1 研究區域介紹 13
3-2 研究資料介紹 18
3-2-1 降雨資料 19
3-2-2 歷史淹水紀錄 20
3-2-3 Landsat影像 27
3-2-4 土地利用圖 29
第四章 研究方法 30
4-1 不透水鋪面面積計算 31
4-1-1 影像分類 32
4-1-2 成果檢核 38
4-2 降雨參數計算 40
4-3 邏輯迴歸模式 42
4-3-1 模式建立 44
4-3-2 模式檢核 45
4-3-3 淹水潛勢分析 46
4-4 研究假設與限制 46
第五章 成果與討論 47
5-1 土地覆蓋成果與討論 47
5-1-1 影像分類成果與精度評估 50
5-1-2 不透水鋪面面積變化 56
5-2 降雨和不透水鋪面對淹水發生之影響 61
5-2-1 邏輯迴歸成果及分析 62
5-2-2 成果檢核 63
5-3 淹水潛勢之情境分析 66
第六章 結論與建議 72
6-1 結論 72
6-2 建議 73
中文參考文獻 74
英文參考文獻 76
附錄 79
附錄一 2001年至2015年洪水事件 79
附錄二 土地利用類別合併分類表 88
參考文獻 內政部,2001-2014,天然災害損失─按災害別分。
台南市政府,2013,"台南市災害防救深耕地2期計畫細部執行企畫書",政府報告。
吳淑滿,2005,"以企業特區觀點探討都市再發展策略",政治大學地政學系碩士論文。
林金樹、陳峰盛,2002,"空間統技法之半變異數模式對推估降雨量空間分布之影響"。「中華地理資訊學會年會暨學術研討會」發表之論文。
陳亮全、林李耀、陳永明、張志新、陳韻如、江申、……、游保杉,2011,"台灣氣候變遷與災害衝擊",政府報告。
陳冠升,2014,"衛星影像應用於都市發展趨勢之研究",中央大學遙測科技碩士學位學程碩士論文。
經濟部,2011,"易淹水地區水患治理計畫--截至99年底執行情形及績效報告 ",政府報告。
經濟部水利署,2001,"納莉颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2004,"敏督利颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2005a,"0612豪雨經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2005b,"海棠颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2006,"碧利斯颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2007,"聖帕颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2008,"卡玫基颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2009,"莫拉克颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2010,"凡那比颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2012,"0610水災經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署,2013,"康芮颱風經濟部經濟部水利署災害緊急應變小組工作執行報告",政府報告。
經濟部水利署水利規劃試驗所,2012,"都市防洪示範區之研究-以臺南市為例",政府報告。
鄭克聲、林國峰、陳明仁、吳宜珍、王筠絜、張家銓、陳宜欣,2013,"氣候變遷水文情境評估研究",政府報告。
Ben-Dor, E., Levin, N., Saaroni, H. (2001). A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.1-1.1μm). A case study over Tel-Aviv, Israel. International Journal of Remote Sensing, 22(11), 2193-2218.
Boonya-aroonnet, S. (2008). Applications of the innovative modelling of urban surface flooding in the UK case studies. Paper presented at the Internation Conference on Urban Drainage.
Brinkhoff, T. (2016). City Population. 2016, from http://www.citypopulation.de/world/Agglomerations.html
Dawson, R. J., Speight, L., Hall, J. W., Djordjevic, S., Savic, D. (2008). Attribution of flood risk in urban areas. Journal of Hydroinformatics, 10(4), 275-288.
Djordjevi?, S., Prodanovi?, D., Maksimovic, ?., Ivetic, M., Savic, D. (2005). SIPSON-simulation of interaction between pipe flow and surface overland flow in networks. Water Science & Technology, 52(5), 275-283.
Driver, N. E., Tasker, G. D. (1988). Techniques for Estimation of Storm-Runoff Loads, Volumes, and Selected Constituent Concentrations in Urban Watersheds in the United States.
Driver, N. E., Troutman, B. M. (1989). Regression models for estimation urban storm-runoff quality adn quantity in the United States. Journal of hydrology, 109, 221-236.
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into spatial interpolation of rainfall. 228, 113-129.
Grayson, R., Bloschl, G. (2001). Spatial modelling of catchment dynamics: Cambridge University Press.
Huang, C., Davis, L. S., Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. Remote Sensing, 23(4), 725-749.
Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92, 1438-1448.
Jensen, J. R., Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering & Remote Sensing, 65, 611-622.
Lin, Y.-P., Hong, N.-M., Wu, P.-J. (2007). Modeling and assessing land-use and hydrological processes to future land-use and climate change scenarios in watershed land-use planning. Enviromental Geology, 53, 623-634.
Lindner-Lunsford, J. B., Ellis, S. R. (1987). Comparison of conceptually based and regression rainfall-runoff models, Denver metropolitan area, Colorado, and potential applications in urban areas.
Loague, K. M., Freeze, R. A. (1985). A comparison of rainfall-runoff modeling techniques on Small Upland Catchments. water resources research, 21(2), 229-248.
Lu, D., Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102, 146-160.
Lu, D., Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. 28(5), 823-870.
Maksimovi?, ?., Prodanovi?, D., Boonya-Aroonnet, Leitao, J. P., Djordjevi?, S., Allitt, R. (2009). Overland flow and pathway analysis for modelling of urban pluvial flooding. Journal of Hydraulic Research, 47(4), 512-523.
Mountrakis, G., Im, J., Ogole, C. (2011). Support vector machines in remote sensing: A review Journal of Photogrammetry and Remote Sensing, 66, 247-259.
Patino, J. E., Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Environment and Urban Systems, 37, 1-17.
Ridd, M. K. (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Remote Sensing, 16(12), 2165-2185.
Sauer, V. B., Thomas, W. O., Stricker, J. V. A., Wilson, K. V. (1984). Flood Characteristics of Urban Watersheds in the United States.
Schmitt, T., Schilling, W., Sagrov, S., Nieschulz, K.-P. (2002). Flood risk management for urban drainage systems by simulation and optimisation.
Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275.
Stefanov, W. L., Ramsey, M. S., Christensen, P. R. (2001). Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment, 77, 173-185.
Ward, D., Phinn, S. R., Murray, A. T. (2000). Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data. The Professional Geographer, 52(3), 371-386.
Weng, Q. (2012). Remote Sensing of impervious surface in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117(117), 34-49.
Wheater, H., Evans, E. (2009). Land use, water management and future flood risk. Land Use Policy, 26(1), S251-S264.
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Monnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98, 317-328.
Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16, 195-231.
指導教授 陳繼藩、姜壽浩 審核日期 2017-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明