博碩士論文 103322606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.208.186.19
姓名 朴莉媮(Tyas Wahyu Pramesthi)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究
(Life Cycle Assessment of BSSF and BOF Slag DGAC Pavement)
相關論文
★ 公共工程統包模式執行專案成員間問題 之研究★ 水泥製程於資源再利用之研究
★ 防水毯的生管與品管之探討★ 建置生命紀念園區營運階段管理模式之研究 以新北市某民間公共紀念園區為例
★ 軍用機場跑道鋪面維護管理暨搶修作業機制之研究★ TAF 檢驗機構認證申請之研究- 以混凝土後置式化學錨栓檢驗為例
★ 利用UML建構實驗室資訊管理平台-以合約審查為例★ 營建施工管理導入即時性資訊傳遞工具功能需求之研究
★ 鋪面養護決策支援分析模式之研究★ 營建材料實驗室量測系統評估及誤差分析
★ 以績效為基礎的公路養護組織與機制之研究★ 智慧型鋪面檢測車平坦度量測驗證與應用
★ 公路設施養護管理程序建立及成本分析之研究-以IDEF方法建立鋪面養護作業程序★ 利用花崗岩及玻璃回收料製造功能性人造石材之研究
★ 自動化鋪面平整度量測分析與破壞影像偵測系統之研究★ 鋪面缺陷影像辨識系統應用於路網檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究聚焦於瞭解使用天然粒料與採用鋼碴取代粗粒料之兩種密級配瀝青混凝土,其對於全球暖化潛勢(Global Warming Potential, GWP)之影響。使用的鋼碴材料分別為轉爐石(Basic Oxygen Furnace, BOF)及滾筒碴(Baosteel’s Slag Short Flow, BSSF),並藉由Gabi 6 生命週期計算軟體之使用,深入瞭解鋪面活動產生之全球暖化潛勢,發現使用轉爐石或滾筒碴取代粗粒料會使全球暖化潛勢上昇。依據模擬運算結果顯示,全球暖化潛勢會隨粒料使用量多寡而增加,使用10%、20%、30%及100%之鋼碴取代粗粒料於面層內相較於傳統密級配瀝青混凝土會使全球暖化潛勢增加4.78%至7.13%之間,然而以鋪築成本考量,使用鋼碴會帶來巨大效益。
研究結果顯示使用轉爐石或滾筒碴比傳統密級配瀝青混凝土能省下多達3.66%(10%鋼碴之密級配瀝青混凝土)至36.47%(100%鋼碴之密級配瀝青混凝土)之總成本,依據全球暖化潛勢模擬及成本分析後,採用鋼碴(轉爐石或滾筒碴)取代天然粗粒料於密級配瀝青混凝土中是可行的且值得未來更多深入探討。
摘要(英) This research is focused on how Global Warming Potential (GWP) was influenced by natural aggregates and replacement of coarse natural aggregate with steel slag on Dense Grade Asphalt Concrete (DGAC). Two types of steel slag, Basic Oxygen Furnace (BOF) and Baosteel’s Slag Short Flow (BSSF) slag were used to replace coarse natural aggregates. By using GaBi 6 Education software, this research discovered GWP which caused by pavement’s activities. Replacement of coarse aggregate with steel slag including BOF or BSSF slag will increase GWP. According to the simulation result, the GWP will increase varies depending on the amount of aggregate used. By using 10%, 20%, 30% and 100% steel slag which replace coarse aggregate in surface layer, GWP was increase between 4.78% until 7.13% compared to the traditional DGAC. However, based on construction cost point of view, using steel slag give significant benefit. The results show that by using BOF or BSSF slag save 3.66% (DGAC 10% steel slag) until 36.47% (DGAC 100% steel slag) of total cost compare to traditional DGAC. Based on the results of GWP simulation and cost analysis, replacement of coarse natural aggregate with steel slag (BOF or BSSF) in DGAC is acceptable and worthy of further research.
關鍵字(中) ★ 密級配瀝青混凝土鋪面
★ 鋼碴
★ Gabi6
★ 全球暖化潛勢
★ 成本
關鍵字(英)
論文目次 ABSTRACT i
ACKNOWLEDGEMENTS ii
Contents iii
List of Figures vi
List of Tables viii
1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Scope 2
1.4 Research Flowchart 4
2. LITERATURE REVIEW 5
2.1 Steel Slag and Asphalt Concrete 5
2.2 Steelmaking Processes in Taiwan 6
2.3 Type and Utilization of Steel Slag 6
2.3.1 Steel Slag as Waste Material 7
2.3.2 Steel Slag as Recycled Material 7
2.4 Benefit Using Steel Slag in Road Construction 8
2.4 Life Cycle Assessment 9
2.5 Life Cycle Assessment on Pavement 11
2.6 Greenhouse Gasses Emissions 12
2.7 GaBi 6 as LCA software 13
3. STUDY PLAN 15
3.1 Life Cycle Inventory Data 15
3.1.1 Road Section 15
3.1.2 Production Phase 16
3.1.3 Construction Phase 21
3.2 Impact Assessment Phase using GaBi 6 26
3.2.1 Gabi 6 26
3.2.2 Limitation on GaBi 6 27
3.3 Cost Calculation 27
4. RESULT ANALYSIS & DISCUSSION 28
4.1 General Design Scheme 28
4.2 Life Cycle Inventory Analysis for traditional DGAC 28
4.3 Life Cycle Inventory Analysis for Pavement with BOF slag 29
4.4 Life Cycle Inventory Analysis for Pavement with BSSF slag 31
4.5 Impact Assessment of Traditional DGAC pavement 32
4.6 Impact Assessment of Pavement with steel slag 36
4.6.1 Impact Assessment of BOF DGAC Pavement with Steel Production 37
4.6.2 Impact Assessment of 100% BOF DGAC Pavement without Steel Production 39
4.6.3 Impact Assessment of BOF DGAC using 30%, 20%, 10% slag without Steel Production 41
4.6.4 Impact Assessment of BSSF DGAC Pavement with Steel Production 47
4.6.5 Impact Assessment of 100% BSSF DGAC Pavement without Steel Production 49
4.6.6 Impact Assessment of BSSF DGAC using 30%, 20%, 10% of slag without Steel Production 52
4.6.7 Construction Phase 57
4.7 Cost Analysis 59
4.7.1 Traditional DGAC Cost 59
4.7.2 BOF DGAC Cost 60
4.7.3 BSSF DGAC Cost 61
4.8 Discussion 63
4.8.1 Global Warming Potential 63
4.8.2 Pavement Construction Cost 64
4.8.3 Transportation Cost 65
4.8.4 GWP and Cost Comparison 66
5. CONCLUSION and RECOMMENDATION 68
5.1 Conclusion 68
5.2 Recommendation 68
Reference 70
APPENDIX I GABI SETTINGS AND RESULTS 73
APPENDIX II COST ANALYSIS 101
參考文獻 A. Carlson, "Life Cycle Assessment of road and pavements," VTI rapport 736 A, Swedish, 2011.
C. Te Chiu, "Current Pavement Technologies in Taiwan," Fourth US-Taiwan Bridge Engineering Workshop, Princeton, New Jersey, 2008.
L. Dumitrescu, S. . G. Maxineasa, I. M. Simion, N. Taranu, R. Andrei and M. Gavrilescu, "EVALUATION OF THE ENVIRONMENTAL IMPACT OF ROAD PAVEMENTS FROM A LIFE CYCLE PERSPECTIVE," Environmental Engineering and Management Journal, vol. 13, no. 2, pp. 449-455, 2014.
T. Häkkinen and K. Mäkelä, "Environmental adaptation of concrete – Environmental impact of concrete and asphalt pavements," Julkaisija-Utgivare, Finland, 1996.
C.-T. Chiu, "Current Pavement Technologies in Taiwan," in Fourth US-Taiwan Bridge Engineering Workshop, Princeton, New Jersey, 2008.
H. L. Sheng and L. D. Fong , "Influence of Cooling Efficiency of Basic Oxygen Furnace Slag Used in Recycled Asphalt Mixtures," International Journal of Pavement Research and Technology, vol. 4, no. 6, pp. 347-355, 2011.
P. Chaurand, J. Rose, J. Domas and J. Y. Bottero, "Speciation of Cr and V within BOF steel slag reused in road construction," Journal of Gheochemical Exploration, vol. 88, pp. 10-14, 2006.
Y. Xue, S. Wu, H. Hou and J. Zha, "Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture," Journal of Hazardous Material, vol. B138, pp. 261-268, 2006.
S. H. Chen, J. D. Lin, D. Huang and C. T. Hung, "Effect of Film Thickness and Voids in Mineral Aggregate in Basic Oxygen Furnace Slag Dense-Graded Asphalt Concrete," Journal of Testing and Evaluation, vol. 43, 2015.
C. C. Chao, "Life Cycle Inventory for Steel in Taiwan," 東海學報, vol. 42, pp. 1-11, 2001.
Nippon Slag Association , "Nippon Slag Association," Nippon Slag Association, 2003. [Online]. Available: http://www.slg.jp/e/slag/kind.html. [Accessed 20 March 2015].
D. S. Corporation, "Dragon Steel," Dragon Steel Corporation , 2015. [Online]. Available: http://www.dragonsteel.com.tw/en/. [Accessed 20 05 2015].
H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan and H. Chen, "An overview of utilization of steel slag," The 7th International Conference on Waste Management and Technology, vol. 16, pp. 791-801, 2012.
D. W. Lewis, "PROPERTIES AND USES OF IRON AND STEEL SLAGS," in National Slag Association Presented at Symposium on Slag National Institute for Transport and Road Research South Africa, South Africa, 1992.
H. Motz and J. Geiseler, "Products of steel slags an opportunity to save natural resources," Waste Management, vol. 21, pp. 285-293, 2001.
ISO, "Environmental management – life cycle assessment – principles and framework". Geneva Patent 14040:2006(E), 2006.
ISO, "Environmental management – life cycle assessment – requirement and guidelines". Geneva Patent ISO 14044:2006(E), 2006.
N. J. Santero, E. Masanet and A. Horvath, "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation and Recycling, vol. 55, pp. 801-809, 2011.
J. Chehovits and L. Galehouse, "Energy Usage and Greenhouse Gas Emissions of Pavement Preservation Processes for Asphalt Concrete Pavements," in Compendium of Papers from the First International Conference on Pavement Preservation,Paper 65, Newport Beach, CA, 2010.
R. Vidal, E. Moliner, G. Martínez and M. C. Rubio, "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation and Recycling, vol. 74, p. 101– 114, 2013.
M. Chappat and J. Bilal, "The Environmental Road of the Future: Life Cycle Analysis, Energy Consumption and Greenhouse," Colas Group, 2003.
G. Software, "GaBi Software," Gabi Software, 2014. [Online]. Available: http://www.gabi-software.com/taiwan/software/gabi-education/. [Accessed 12 06 2015].
B. Kim, H. Lee, H. Park and H. Kim, "Framework for Estimating Greenhouse Gas Emissions Due to Asphalt Pavement Construction," JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, vol. 138, no. 11, pp. 1312-1321, 2012.
U.S Environmental Protection Agency, "Hot Mix Asphalt Plants Emission Assessment Report," U.S Environmental Protection Agency, North Carolina, 2000.
H. Stripple, "Life Cycle Assessment of Road A Pilot Study for Inventory Analysis," IVL Swedish Environmental Research Institute, Gothenburg, Sweden, 2001.
H. P. Tserng, J. S. Russellb, B. K. Krishnamurth and R. L. Schmitt, "An operations planning system for asphalt pavement compaction," in International Association for Automation and Robotics in Construction, Tokyo, 1996.
指導教授 陳世晃、林志棟 審核日期 2015-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明