博碩士論文 103323014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:54.224.230.51
姓名 廖原廷(Yuan-Ting Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-1-14以後開放)
摘要(中) 本研究主旨在探討掉落體衝擊不同的顆粒粒徑、顆粒形狀、高剛性及顆粒密度的顆粒床之運動及力學行為。本研究設計簡單的掉落實驗裝置,採用高速攝影機拍攝掉落體衝擊過程,透過兩個視角的平面二維影像,使用改良式粒子追蹤測速技術,量測掉落體在顆粒床內的三維位置,除了求得掉落體在顆粒床內垂直方向的速度及加速度外,更增加水平面的速度及角速度量測,並藉由掉落體的加速度求得顆粒床對掉落體之阻力行為。本研究實驗項目如下: 掉落體衝擊三種粒徑(3 mm、5 mm及8 mm)的氧化鋁顆粒床、五種形狀(球形、二款橢圓形、膠囊形及雙球形)的ABS顆粒床、三種形狀(球形、碟形及圓柱形)的碳鋼顆粒床及三種密度(碳鋼、氧化鋁及ABS)的同粒徑球形顆粒床等。實驗結果顯示: (1)掉落體在粒徑較大的顆粒床的加速度、阻力、水平面速度及角速度呈現較大數值,隨著粒徑減少而降低,貫入深度則隨粒徑減少而增加;(2)在不同形狀的顆粒床,掉落體在顆粒床內的貫入深度依序為橢圓形Ⅱ、球形、橢圓形Ⅰ、膠囊形及雙球形,雙球形與膠囊形顆粒具有明顯的顆粒互鎖效應。在雙球形及膠囊形顆粒床,掉落體在水平面上呈現較大速度,而球形及二款橢圓形顆粒床因較易貫穿,造成掉落體在水平面上的速度偏低;(3)在三種形狀的碳鋼顆粒床,圓柱形顆粒具有明顯的顆粒互鎖效應,掉落體的加速度、阻力、水平面速度及角速度隨著顆粒互鎖效應增強而增加,但貫入深度則是隨顆粒互鎖效應增強而減少;(4)在三種密度的球形顆粒床,掉落體在顆粒床內的加速度、阻力、水平面速度及角速度隨著密度愈大而增加,相反地貫入深度則隨密度愈大而減少。
摘要(英) The aim of this study is to investigate the dynamics and mechanical behavior of a free-fall projectile impacting granular beds with different particle sizes, shapes, densities and high stiffnesses. A simple drop experimental device was designed. A high-speed camera was used to observe the impact process of the projectile, and the images from the two perpendicular directions were captured by means of the properly- orientated mirror. The 3D positions of the projectile were analyzed by using Improved Particle Tracking Velocimetry. The kinematical quantities, including the vertical velocity and acceleration of the projectile as well as the translational and angular velocities in the horizontal plane were further evaluated. The drag force on the projectile was determined by the acceleration of projectile. The main findings are summarized as follows: (1) The projectile in the granular bed with a larger particle size shows a larger vertical acceleration, drag force, and translational and angular velocities in the horizontal plane, which decreases with decreasing of the particle size. However, the penetration depth decreases with increasing of the particle size;(2) The penetration depth of the projectile was found to be in following sequence (from deep to shallow): ellipsoidal Ⅱ, spherical, ellipsoidalⅠ, capsule and paired. Paired and capsule particles have a greater interlocking effect so that the projectile has a larger translational velocity in the horizontal plane. On the other hand, the projectile easily penetrated through granular bed with spherical and ellipsoidal particles due to the shape effect, resulting in smaller translational velocity in the horizontal plane;(3) For granular beds with strong interlocking effects, the projectile has a larger value of acceleration, drag force, and translational and angular velocities in the horizontal plane. The penetration depth increases with smaller interlocking effect;(4) The results show that the acceleration, drag force, horizontal velocity and angular velocity of the projectile increases with increasing particle density. The penetration depth decreases with increasing particle density.
關鍵字(中) ★ 顆粒體
★ 衝擊實驗
★ 顆粒粒徑效應
★ 顆粒形狀效應
★ 顆粒密度效應
★ 顆粒互鎖
關鍵字(英) ★ granular materials
★ impact test
★ particle sizes
★ particle shapes
★ particle densities
★ interlocking effect
論文目次 摘要 i
Abstract ii
目錄 iv
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1.1顆粒體 1
1.2掉落體對顆粒床的衝擊行為 2
1.3顆粒形狀與尺寸的影響 8
1.4研究動機與方向 10
第二章 12
2.1 實驗設備 12
2.2 實驗方法 13
2.2.1實驗影像處理 13
2.2.2影像分析流程 16
2.3 實驗步驟 18
2.4 單顆粒材料性質 19
2.5 研究探討項目 20
第三章 結果與討論 22
3.1顆粒床粒徑對掉落體衝擊行為之影響 22
3.2柔性顆粒床顆粒形狀對掉落體衝擊行為之影響 26
3.3剛性顆粒床顆粒形狀對掉落體衝擊行為之影響 31
3.4顆粒床顆粒材質對掉落體衝擊行為之影響 34
第四章 結論 39
參考文獻 41
參考文獻 1.H. J. Herrmann, “Granular Matter,” Physica A, Vol. 313, pp. 188-210, 2002.
2.J. S. Uehara, M. A. Ambroso, R. P. Ojha, D. J. Durian, “Low-speed impact craters in loose granular media,” Physical Review Letter, Vol. 90, 194301, 2003.
3.K. Wada, H. Senshu, T. Matsui, “Numerical Simulation of Impact Cratering on Granular Material,” Icarus, Vol. 180, pp. 528-545, 2006.
4.D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, Devaraj van der Meer, Michel Versluis, Ko van der Weele, Martin van der Hoef, and Hans Kuipers, “Impact on Soft Sand: Void Collapse and Jet Formation,” Physical Review Letter, Vol. 93,198003,2004.
5.M. P. Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman, I. Vishik, and H. L. Swinney, “Dynamics of Drag and Force Distributions for Projectile Impact in Granular Medium,” Physical Review Letter, Vol. 92, 194301,2004.
6.R. Albert, M. A. Pfeifer, A. L. Barabási, P. Schiffer, “Slow Drag in a Granular Medium,” Physical Review Letter, Vol. 82, pp. 205-208, 1999.
7.A. Seguin, Y. Bertho, and P. Gondret, “Influence of confinement on granular penetration by impact,” Physical Review E, Vol. 78, 010301(R), 2008.
8.M. B. Stone, R. Barry, D. P. Bernstein, M. D. Pelc, Y. K. Tsui, and P. Schiffer, “Stress propagation: Getting to the bottom of a granular medium,” Nature 427, pp.503-504, 2004
9.M. B. Stone, R. Barry, D. P. Bernstein, M. D. Pelc, Y. K. Tsui, and P.Schiffer, “Studies of local jamming via penetration of a granular medium,” Physical Review E, Vol. 70, 041301, 2004
10.L. S. Tsimring, D. Volfson, “Modeling of Impact Cratering in Granular Media,” Powders and Grains, Vol. 2, pp. 1215-1223, 2005.
11.H. Katsuragi and D. J. Durian, “Unified force law for granular impact cratering,” Nature Physics, Vol.3, pp.420-423, 2007
12.M. Hou, Z. Peng, R. Liu, K. Lu, and C. K. Chan, “Dynamics of a Projectile Penetrating in Granular Systems,” Physical Review E, Vol. 72, 062301, 2005.
13.M. Houa, Z. Penga, R. Liua, Y. Wua, Y. Tiana, K. Lua, C. K. Chan, “ Projectile impact and penetration in loose granular bed,” Science and Technology of Advanced Materials, Vol. 6, pp. 855-859, 2005.
14.M. A. Ambroso, C. R. Santore, A. R. Abate, D. J. Durian, “Penetration Depth for Shallow Impact Cratering,” Physical Review E, Vol. 71, 051305, 2005.
15.J. R. de Bruyn, A. M. Walsh, “Penetration of Spheres into Loose Granular Media,” Canadian Journal of Physics, Vol. 82, pp. 439-446, 2004.
16.O. Zik, J. Stavans and Y. Rabin, “Mobility of a Sphere in Vibrated Granular Media,” Europhysics Letters, Vol.17, Number 4,1992
17.L. E. Silbert, G. S. Grest, and J. W. Landry, “Statistics of the contact network in frictional and frictionless granular packings,” Physical Review E, Vol.66 , 061303, 2002
18.Y. Li, A. Dove, J.S. Curtis, J.E. Colwell, “3D DEM simulations and experiments exploring low-velocity projectile impacts into a granular bed,” Powder Technology, Vol.288, pp.303-314, 2016
19.A.L. Barabási, R. Albert, P. Schiffer, “The physics of sand castles: maximum angle of stability in wet and dry granular media,” Physica A, Vol. 266, pp. 366-371,1999.
20.D. I. Goldman and P. Umbanhowar, “Scaling and dynamics of sphere and disk impact into granular media,” Physical Review E, Vol. 77, 021308, 2008.
21.A. Seguin, Y. Bertho, P. Gondret and J. Crassous, “Sphere penetration by impact in a granular medium A collisional process,” Europhysics Letters, Number 4, 2009.
22.X. J. Zheng, Z. T. Wang, Z. G. Qiu, “Impact craters in loose granular media,” THE EUROPEAN PHYSICAL JOURNAL E, Vol. 13, pp. 321-324, 2004.
23.Simon J. de Vet and John R. de Bruyn,“Shape of impact craters in granular media,”
Physical Review E, Vol.76, 041306, 2007.
24.J. Härtl, J. Y. Ooi, “Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments,” Powder Technology, Vol. 212, pp. 231-239, 2011.
25.J. Wiącek, M. Molenda, J. Horabik, J. Y. Ooi, “Influence of Grain Shape and
Intergranular Friction on Material Behavior in Uniaxial Compression: Experimental and DEM Modeling,” Powder Technology, Vol. 217, pp. 435-442, 2012.
26.A. A. Peña, R. G. Rojo, and H. J. Herrmann, “Influence of Particle Shape on Sheared
Dense Granular Media,” Granular Matter, Vol. 9, pp. 279-291, 2007.
27.H. H. Peng, C.K Lin, Y. C. Chung , “Effects of Particle Friction and Particle Shape on the Mechanical Response of Granular Solid under Confined Compression,” Procedia Engineering ,Vol.79,pp.143-152,2014.
28.G. Dondi, A. Simone, V. Vignali, and G. Manganelli, “Numerical and Experimental
Study of Granular Mixes for Asphalts,” Powder Technology, Vol. 232, pp. 31-40, 2012.
29.K. Szarf, G. Combe, and P. Villard, “Polygons vs. Clumps of Discs: A Numerical Study of the Influence of Grain Shape on the Mechanical Behavior of Granular Materials,” Powder Technology, Vol. 208, pp. 279-288, 2011.
30.Y. C. Chung, S. S. Hsiau, H. H. Liao, J. Y. Ooi, “An improved PTV technique to evaluate the velocity field of non-spherical particles,” Powder Technology, Vol.202, pp. 151-161, 2010.
31.M.Sonka, V.Hlavac and R.Boyle, “Image processing ,analysis and machine vision,” PWS Publishing, 1999.
32.S. S. Hsiau, Y. M. Shieh, “Fluctuations and self-diffusion of sheared granular material flow,” Journal of Rheology, Vol. 43, issue 5, pp.1049-1066, 1999.
33.Y. C. Chung, H. H. Liao, S. S. Hsiau, “Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation,” Powder Technology , Vol. 237, pp. 53-66, 2013.
34.A. Dziugys and B. Peters, “An Approach to Simulate the Motion of Spherical and
Non-Spherical Fuel Particles in Combustion Chambers,” Granular Matter, Vol. 3, pp. 231-265, 2001.
35.H. T. Chou, C. F. Lee, Y. C. Chung, and S. S. Hsiau, “Discrete Element Modelling and
Experimental Validation for the Falling Process of Drygranular Steps,” Powder Technology, Vol. 231, pp. 122-134, 2012.
36.MatWeb, Aluminum, http://www.matweb.com/
37.MatWeb, AISI 1012 steel, http://www.matweb.com/
38.MatWeb, Aluminium oxide, http://www.matweb.com/
39.MatWeb, ABS, http://www.matweb.com/
40.MatWeb, Medium Carbon steel, http://www.matweb.com/
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2016-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明