博碩士論文 103323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.144.16.254
姓名 吳偉任(Wei-Jen Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程用冷凍成型積層製造之固態水支撐結構生成研究
(Generation Process of Support Structure by Water Phase Change for Frozen-Form Additive Manufacturing of Tissue Engineering)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 聚醚醚酮之積層製造系統開發★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 積層製造技術具有快速客製化優勢,適合製作多孔性且形狀複雜的組織工程支架,而本研究選用冷凍成型積層製造製作支架。然而,使用冷凍成型積層製造製作複雜外型且具有多孔結構的支架相當困難,因為難以完全去除支撐結構。本研究將開發一種可快速生成且可完全去除支撐結構的「固態水支撐製程」,用以解決上述困難。
首先,本研究改良冷凍成型積層製造的低溫裝置及添加環境控制模組,提升冷凍槽的冷凍能力,以提供製作大尺寸支架及快速生成支撐結構之能力。新的低溫裝置是將銅管與擋水鋼板結合,提高熱傳導效率。改良後的結果顯示,工作平台最低溫由原本-30°C可降至-50°C。從室溫到達-30°C的時間,由150分鐘降為20分鐘。另外,藉由水的相變化得以快速生成支撐結構,液體水經由噴霧閥噴灑在工作平台上,冷凍成固態冰,進而成為支撐結構。支架製作完成後,再利用氣化將支撐結構完全去除。最後,本研究根據文獻及熱像儀分析,決定使用10wt%乙醇水溶液作為支撐材料,並可在35秒內沉積75 55mm²的工作範圍。
為了驗證固態水支撐製程之功效,本研究使用PU/PEO為支架材料,製作圓柱支架。由細胞活性實驗的四唑鹽比色法得知,細胞在使用固態水支撐製作的支架內,經過24小時可生長1.8倍的數量。從動態機械分析得知,使用固態水支撐製作的支架,因膨潤效應導致剛性強度降低,但對於支架回彈能力影響不大。經實驗觀察,將支架擠壓後2秒內可回彈回原來的形狀。而使用固態水支撐製作的支架會產生微奈米的網狀結構,藉由核磁共振光譜法得知網狀結構為支架本身材料。最後,使用固態水支撐製作大型雙倒T通孔支架與Y形管支架。由上述證實本研究之方法可製作大尺寸複雜外型且具有多孔結構的組織工程支架。
摘要(英) Additive manufacturing technology has the advantage in rapid customization, and it is suitable for the production of tissue engineering scaffolds with high porosity and complex shape. This study is focusing on frozen-form additive manufacturing. However, it was difficult to produce the scaffolds with complex shape and porous structure, because its support structure could not be removed completely. This study developed a support process to rapidly generate the support structure and was removed completely.
Firs, This study improved the uniform cryogenic device module and added environmental control module into frozen-form additive manufacturing to enhance the freezing capacity and produce large complex shape scaffolds and rapidly generate support structure. The retaining steel and the copper tube were combined to become the cooling enclosure, which reduced energy loss. The lowest temperature of the working plate became -50°C from -30°C, and the time for the temperature to reach -30°C was reduced from 150 minutes to 20 minutes. Additionally, the support structure was generated by water phase change. Liquid was sprayed on the working plate through the spray valve, and it was frozen into solid to generate the support structure. Finally, the support structure was completely removed by vaporization. According to the literatures and the result of thermal imaging camera, 10wt% ethanol solution was selected as the support material and deposited onto 75 55mm area in 35 seconds.
In order to verify the effectiveness of the support process, PU/PEO was used as the scaffold material to produce cylindrical scaffolds. The cell viability testing was performed using MTT-assay. The results showed that the number of cells grew 1.8 times in 24 hours. The storage module of the scaffolds was lower with the support process, because of swelling effect, but it had a little effect on the elastic recovery. In the experimental observation, the scaffolds restored origin shape in 2 sec after extrusion. Furthermore, the micro/nano network structure of the scaffold was generated between strand and strand after the support process. The micro/nano network structure was detected by nuclear magnetic resonance spectroscopy, and the results showed that it was the material of the scaffold. Finally, the dual inverted T-type inner channels scaffold and the Y-type scaffold were produced in this study. From the above, this study verity the approach to produce large complex shape and porous structure tissue engineering scaffolds.
關鍵字(中) ★ 組織工程支架
★ 冷凍成型積層製造
★ 噴霧閥
★ 支撐結構
關鍵字(英) ★ tissue engineering scaffold
★ frozen-form additive manufacturing
★ spray valve
★ support structure
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
符號說明 XI
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機與目的 13
1-4論文架構 13
第二章 研究與理論說明 14
2-1組織工程簡介 14
2-2組織工程用積層製造簡介 16
2-3冷凍成型積層製造系統 20
2-4擠壓流率計算理論 28
第三章 研究方法 32
3-1 冷凍成型積層製造系統之改良 32
3-2支架材料與支撐材料的選擇 38
3-3冷凍成型積層製造之流程 41
3-4冷凍成型積層製造系統控制方法 51
3-5固態水支撐生成方法 56
3-6支架路徑規劃 61
第四章 實驗結果與討論 72
4-1冷凍槽溫度與股線直徑實驗分析 72
4-2支撐材料不同濃度之潛熱分析 76
4-3使用固態水支撐製作支架之分析 79
4-4複雜外型之支架製作 85
第五章 結論與未來展望 88
5-1結論 88
5-2未來展望 88
參考文獻 90
參考文獻 [1] 楊志明,組織工程,九州圖書,民國94年。
[2] Y. S. Nam and T. G. Park, “Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation”, Journal of Biomedical Materials Research. Part A, Vol. 47, pp.8-17, 1999.
[3] A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacant and R. Langer, “Laminated Three-dimensional Biodegradable Foams for Use in Tissue Engineering”, Biomaterials, Vol. 14, pp.323-330, 1993.
[4] D. C. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan and T. Friis, “Polyurethane (PU) Scaffolds Prepared by Solvent Casting/Particulate Leaching (SCPL) Combined with Centrifugation”, Materials Science and Engineering: C, Vol. 30, pp.78-85, 2010.
[5] 中國機械工程學會,3D列印 列印未來—從虛擬到實現,佳魁文化,民國102年。
[6] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp.307-318, 1996.
[7] R. P. Lanza, R. Langer and J. Vacanti, Principles of Tissue Engineering, Edition, Academic Press, 2000.
[8] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan, “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research Part A, Vol. 55, pp.203-216, 2001.
[9] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp.1169-1185, 2002.
[10] S. H. Hsu, H. J. Yen, C. S. Tseng, C. S. Cheng and C. L. Tsai, “Evaluation of The Growth of Chondrocytes and Osteoblasts Seeded into Precision Scaffolds Fabricated by Fused Deposition Manufacturing”, Journal of Biomedical Materials Research, Vol. 80B, pp.519-527, 2007.
[11] H. J. Yen, S. H. Hsu, C. S. Tseng, J. P. Huang and C. L. Tsai, “Fabrication of Precision Scaffolds Using Liquid-frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering Part A, Vol. 15, pp.965-975, 2009.
[12] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-temperature Deposition”, Scripta Materialia, Vol. 46, pp.771-776, 2002.
[13] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research, Vol. 88B, pp.254-263, 2009.
[14] 黃仁波,「以冷凍式快速原型法製作組織工程支架」,國立中央大學,碩士論文,民國94年。
[15] 陳彥霖,「組織工程用三維支架之電腦輔助製程設計」,國立中央大學,碩士論文,民國96年。
[16] 蘇彥安,「組織工程用三維支架製程改善之研究」,國立中央大學,碩士論文,民國98年。
[17] C. B. Pham, K. F. Leong, T. C. Lim and K. S. Chian, “Rapid Freeze Prototyping Technique in Bio-plotters for Tissue Scaffold Fabrication”, Rapid Prototyping Journal, Vol. 14, pp.246-253, 2008.
[18] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering”, Journal of Materials Chemistry, Vol. 19, pp.8817-8823, 2009.
[19] G. H. Kim, S. H. Ahn, Y. Y. Kim, Y. S. Cho and W. Chun, “Coaxial Structured Collagen-alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration”, Journal of Materials Chemistry, Vol. 21, pp.6165-6172, 2011.
[20] N. D. Doiphode, T. Huang, M. C. Leu, M. N. Rahaman and D. E. Day, “Freeze Extrusion Fabrication of 13–93 Bioactive Glass Scaffolds for Bone Repair”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp.515-523, 2011.
[21] W. Zhang, M. C. Leu, Z. Ji and Y. Yan, “Rapid Freezing Prototyping with Water”, Materials & Design, Vol. 20, pp.139-145, 1999.
[22] Q. Liu and M. C. Leu, “Finite Element Analysis of Solidification in Rapid Freeze Prototyping”, Journal of Manufacturing Science and Engineering, Vol. 129, pp.810-820, 2007.
[23] F. D. Bryant and M. C. Leu, “Modeling and experimental results of concentration with support material in rapid freeze prototyping”, Rapid Prototyping Journal, Vol. 15, pp.317-324, 2009.
[24] C. Y. Liu, Y. Li, L. Zhang, S. Mi, Y. Y. Xu and W. Sun, “Development of A Novel Low-temperature Deposition Machine Using Screw Extrusion to Fabricate Poly(L-lactide-co-glycolide) Acid Scaffolds”, Journal of Engineering in Medicine, Vol. 228, pp.593-606, 2014.
[25] M. S. Laia, D. R. Jorge and O. Neri, “Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion”, 3D Printing and Additive Manufacturing, Vol. 1, pp.141-151, 2014.
[26] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, “3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration”, Biofabrication, Vol. 6, pp.103-115, 2014.
[27] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
[28] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
[29] C. H. Lin, J. M. Su and S. H. Hsu, “Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-engineered Trachea”, Tissue Engineering Part C: Methods, Vol. 14, pp.69-77, 2008.
[30] J. H. Park, J. M. Hong, Y. M. Ju, J. W. Jung, H. W. Kang, S. J. Lee, J. J. Yoo, S. W. Kim, S. H. Kim and D. W. Cho, “A Novel Tissue-engineered Trachea with A Mechanical Behavior Similar to Native Trachea”, Biomaterials, Vol. 62, pp.106-115, 2015.
[31] R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye and G. E. Green, “Mitigation of Tracheobronchomalacia with 3D-printed Personalized Medical Devices in Pediatric Patients”, Science Translational Medicine, Vol. 7, pp. 285-296, 2015.
[32] G. H. Wu and S. H. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical and Biological Engineering, Vol. 35, pp.285-292, 2015.
[33] B. Dhariwala, E. Hunt and T. Boland, “Rapid Prototyping of Tissue-engineering Constructs, Using Photopolymerizable Hydrogels and Stereolithography”, Tissue Engineering, Vol. 10, pp.1316-1322, 2004.
[34] C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu and S. Peng, “Fabrication of Porous Polyvinyl Alcohol Scaffold for Bone Tissue Engineering Via Selective Laser Sintering”, Biofabrication, Vol. 5, 015014, 2013.
[35] R. P. Chhabra and J. F. Richardson, Non-Newtonian and Applied Rheology: Engineering Application, Edition, ELSEVIER, 2008.
[36] D. V. Boger, “Demonstration or Upper and Lower Newtonian Fluid Behavior in a Pseudoplastic Fluid”, Nature, Vol. 265, pp.126-128, 1977.
[37] J. Y. Kim, J. K. Park, S. K. Hahn, T. H. Kwon and D. W. Cho, “Development of The Flow Befavior Model for 3D Scaffold Fabrication in The Polymer Deposition Process by A Heating Method”, Journal of Micromechanics and Microengineering, Vol. 19, 105003, 2009.
[38] K. C. Hung, C. S. Tseng and S. H. Hsu, “Synthesis and 3D Priting of Biodegradable Polyurethane Elastomer by a Water-based Process for Cartilage Tissue Engineering Applications”, Advanve Healthcare Material, Vol. 3, pp1578-1587, 2014.
[39] S. H. Hsu, K. C. Hung, Y. Y. Lin, C. H. Su, H. Y. Yeh, U. S. Jeng, C. Y. Lu, S. A. Dai, W. E. Fu and J. C. Lin, “Water-based Synthesis and Processing of Novel Biodegradable Elastomers for Medical Applications”, Journal of Materials Chemistry B, Vol. 2, pp.5083-5092, 2014.
[40] D. L. Teagarden and D. S. Baker, “Practical Aspects of Lyophilization Using Non-aqueous Co-solvent Systems”, European Journal of Pharmaceutical Sciences, Vol. 15, pp.115-133, 2002.
[41] N. P. Cheremisinoff, Industrial Solvents Handbook, Edition, Marcel Dekker, 2003.
[42] K. Takaizumi, “A Curious Phenomenon in The Freezing-Thawing Process of Aqueous Ethanol Solution”, Journal of Solution Chemistry, Vol. 34, pp.597-612, 2005.
[43] H. Kumano, T. Asaoka, A. Saito and S. Okawa, “Study on Latent Heat of Fusion of Ice in Aqueous Solutions”, International Journal of Refrigeration, Vol. 30, pp.267-273, 2007.
[44] H. Seager, C. B. Taskis, M. Syrop and T. J. Tee, “Structure of Products Prepared by Freeze-drying Solutions Containing Organic Solvents”, PDA Journal of Pharmaceutical Science and Technology, Vol. 39, pp.161-179, 1985.
[45] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,民國102年。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2016-12-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明