博碩士論文 103323041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.224.210.130
姓名 蘇昱綾(Yu-Ling Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以PEDOT:PSS混合石墨烯對光電特性之影響
(The effects of graphene additives on optoelectronic properties of PEDOT:PSS)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-1-30以後開放)
摘要(中) 透明導電薄膜即是透明且可導電的薄膜,應用相當廣泛,包含觸控面板、太陽能電池、可撓性之LCD及OLED,導電高分子是新型透明導電薄膜的一種,以聚二氧乙基?吩:聚苯乙烯磺酸化合物Poly(3,4-ethylenedioxythiophene): poly(styrene-4-sulfonate),PEDOT:PSS為代表材料。本研究以簡易的製備方式,將電化學剝離石墨烯(Electrochemical exfoliated graphene,ECG)混合PEDOT:PSS製成複合薄膜,以探討添加石墨烯後的透明導電薄膜之光電特性。電化學剝離石墨烯製備過程不須複雜的化學變化,產率高且成本低。將電化學剝離之石墨烯摻雜在PEDOT:PSS中,PEDOT分子與石墨烯以π-π鍵鍵結,而PSS鏈與石墨烯的微量官能基鍵結,降低PEDOT與PSS間庫倫引力,使PEDOT與PSS分離且PEDOT產生構象變化,且石墨烯與PEDOT形成導電網絡,以利於導電,其片電阻由0.36 kΩ/□降至0.18 kΩ/□。PEDOT:PSS穩定性差,其透明導電薄膜放置約60天後無法測量到片電阻值,從不同天數量測之ATR-FTIR譜圖中可觀察到,C-H及O-H發生明顯變化。而PEDOT:PSS/ECG透明導電薄膜經270天依然可測量到片電阻值,且不同天數量測之ATR-FTIR譜圖之譜線無劇烈變化,故推測PEDOT:PSS中的C-H及O-H鍵結改變使整體結構不穩定導致裂化。PEDOT:PSS混合石墨烯不只可提升導電性,也可提升穩定度耐久性,本實驗將探討PEDOT:PSS劣化原因以及添加石墨烯後改善之處。
摘要(英) Transparent conductive films (TC films), which have good properties of optically transparent and electrically conductive, are widely used in touch screen, solar cell, flexible LCD and OLED. The conductive polymer is used as TC films, such as Poly(3,4-ethylenedioxythiophene): poly(styrene-4-sulfonate) (PEDOT:PSS). In this study, we used an easier method to mix the electrochemical exfoliated graphene (ECG) into PEDOT:PSS. The effects of graphene additives on optoelectronic properties of PEDOT:PSS were investigated. Electrochemical exfoliation method is widely applied due to high scalability and low production cost, especially it does not need complicatedly chemical reactions. We mixed the ECG powders into PEDOT:PSS. In this way, PEDOT molecular and ECG sheet were combined with π-π bond, and PSS chains bond on the functional group of ECG. These reactions decrease the Coulombic interaction between PEDOT and PSS, which induced phase separation and conformational change of PEDOT. It improved the conductivity of TC films so that the sheet resistance decreased from 0.36 kΩ/□ to 0.18 kΩ/□. In the electrical stability measurement, the sheet resistance of PEDOT:PSS TC films could not be measured after 60 days. The ATR-FTIR spectrum for PEDOT:PSS TC films were employed, where the C-H and O-H peaks were observed changed after 40 days. However, the sheet resistance of PEDOT:PSS/ECG can be measured after 270 days. The ATR-FTIR spectrum for PEDOT:PSS/ECG TC films showed no huge variation. We suppose that the changes of C-H and O-H are the key that makes PEDOT:PSS damaged. In conclusion, the effects of graphene additives promote the conductivity and stability of PEDOT:PSS.
關鍵字(中) ★ 電化學剝離石墨烯
★ 穩定性
關鍵字(英) ★ Electrochemical exfoliated graphene
★ PEDOT:PSS
★ Stability
論文目次 摘要 I
Abstract II
誌謝 III
總目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 石墨烯簡介 1
1-2 石墨烯製備方式 3
1-2-2 微機械剝離法 (Micromechanical exfoliation) 3
1-2-3 化學氣相沉積法 (Chemical vapor deposition,CVD) 5
1-2-4 化學剝離法 (Chemical exfoliation) 7
1-2-5 電化學剝離法 (Electrochemical exfoliation) 8
第二章 研究背景與文獻回顧 10
2-1 透明導電薄膜 10
2-1-2 PEDOT:PSS 11
2-2 PEDOT:PSS 改質方法 13
2-2-1 添加有機溶劑 13
2-2-2 加熱退火 16
2-3 石墨烯混摻PEDOT:PSS 19
2-3-1 氧化石墨烯混摻PEDOT:PSS 19
2-3-2 氧化石墨烯混摻PSS再聚合PEDOT 23
2-3-3 還原氧化石墨烯混摻PEDOT:PSS 25
2-3-4 還原氧化石墨烯混摻PSS再聚合PEDOT 26
2-3-5 電化學剝離石墨烯混摻PEDOT:PSS 28
2-4 實驗動機 29
第三章 實驗步驟與檢測方式 30
3-1 實驗架構 30
3-2 玻璃基板清洗 31
3-3 製備電化學剝離石墨烯 33
3-4 調配複合材料溶液 33
3-4-1 PEDOT:PSS/ECG溶液配置 33
3-4-2 參考樣品: 本質PEDOT:PSS溶液配置 34
3-5 製作透明導電薄膜 35
3-5-2 不鏽鋼線棒及鐵氟龍棒塗佈 36
3-5-3 噴塗法 36
3-6 材料特性檢測 37
3-6-1 表面輪廓儀(Alpha-Step) 37
3-6-2 接觸角量測儀(Contact angle meter) 37
3-6-3 光學顯微鏡(Optical microscope,OM) 37
3-6-4 原子力顯微鏡(Atomic force microscope,AFM) 38
3-7 光電特性檢測 38
3-7-1 四點探針量測儀(Four-point probe tester) 38
3-7-2 可見光紫外光分光光譜儀(Ultraviolet-visible spectroscopy) 39
3-8 材料分析檢測 39
3-8-1 拉曼光譜儀(Raman spectroscopy) 39
3-8-2 X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS) 40
3-8-3 霍氏轉換紅外光譜儀(Fourier-transform infrared spectrometer,FTIR) 42
第四章 結果與討論 43
4-1 PEDOT:PSS/ECG 材料特性分析 43
4-1-1 電化學剝離石墨烯在PEDOT:PSS溶液中分散性 43
4-1-2 表面形貌觀察 44
4-2 透明導電薄膜塗佈方式比較 47
4-2-1 不鏽鋼線棒及鐵氟龍棒塗佈 47
4-2-2 噴塗法 51
4-3 PEDOT:PSS/ECG透明導電薄膜片電阻量測與分析 55
4-3-1 透明導電薄膜加熱溫度對片電阻之影響 55
4-3-2 透明導電薄膜加熱時間對片電阻之影響 58
4-3-3 透明導電薄膜之石墨烯調配濃度最佳化 60
4-4 PEDOT:PSS/ECG與PEDOT:PSS透明導電薄膜之比較 63
4-4-1 光電特性比較 63
4-4-2 時效耐久性比較 66
第五章 結論 81
參考文獻 82

參考文獻 1. 韋進全, et al., 奈米碳管巨觀體: 物理化學特性與應用. 2009: 五南.
2. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
3. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
4. Application charts for nanoclays, graphene and nanocoatings. Nov 18, 2011.
5. Novoselov, K.S. and A.H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012. T146: p. 014006.
6. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
7. Munoz, R. and C. Gomez?Aleixandre, Review of CVD synthesis of graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
8. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
9. Li, J., et al., The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants, 2014. 2(3): p. 137-161.
10. Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
11. He, H.Y., et al., A new structural model for graphite oxide. Chemical Physics Letters, 1998. 287(1-2): p. 53-56.
12. Low, C.T.J., et al., Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013. 54: p. 1-21.
13. Su, C.Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano, 2011. 5(3): p. 2332-2339.
14. Sukang, B., et al., Towards industrial applications of graphene electrodes. Physica Scripta, 2012. 2012(T146): p. 14-24.
15. 劉偉仁, et al., 石墨烯技術. 2015, 五南圖書出版公司.
16. Groenendaal, L., et al., Poly (3, 4?ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials, 2000. 12(7): p. 481-494.
17. Dupont, S.R., et al., Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films. Advanced Functional Materials, 2014. 24(9): p. 1325-1332.
18. Tsai, T.-C., et al., A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Organic Electronics, 2014. 15(3): p. 641-645.
19. Kong, F., et al., Effect of solution pH value on thermoelectric performance of free-standing PEDOT:PSS films. Synthetic Metals, 2013. 185-186: p. 31-37.
20. Zhou, J., et al., The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. J. Mater. Chem. C, 2014. 2(46): p. 9903-9910.
21. Kim, J.Y., et al., Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 2002. 126(2–3): p. 311-316.
22. Pistillo, B.R., et al., One step deposition of PEDOT films by plasma radicals assisted polymerization via chemical vapour deposition. J. Mater. Chem. C, 2016. 4(24): p. 5617-5625.
23. Culebras, M., C. Gomez, and A. Cantarero, Review on Polymers for Thermoelectric Applications. Materials, 2014. 7(9): p. 6701-6732.
24. Deetuam, C., et al., Electrical conductivity enhancement of spin-coated PEDOT:PSS thin film via dipping method in low concentration aqueous DMSO. Journal of Applied Polymer Science, 2015. 132(24): p. 42108.
25. Na, S.-I., et al., Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. Journal of Materials Chemistry, 2009. 19(47): p. 9045-9053.
26. Yeo, J.S., et al., Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS Appl Mater Interfaces, 2012. 4(5): p. 2551-2560.
27. Dehsari, H.S., et al., Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv., 2014. 4(98): p. 55067-55076.
28. Jo, K., et al., Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir, 2011. 27(5): p. 2014-2018.
29. Li, F., et al., Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films. Synthetic Metals, 2014. 197: p. 58-61.
30. Wu, X., et al., Highly conductive PEDOT:PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes. J. Mater. Chem. C, 2016. 4(36): p. 8528-8534.
31. Trang, L.K.H., et al., Preparation and characterization of graphene composites with conducting polymers. Polymer International, 2012. 61(1): p. 93-98.
32. Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155-158.
33. Zhang, M., et al., Solution-processed PEDOT:PSS/graphene composites as the electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces, 2014. 6(5): p. 3587-3593.
34. Xia, Y., K. Sun, and J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater, 2012. 24(18): p. 2436-2440.
35. Yoo, D., J. Kim, and J.H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014. 7(5): p. 717-730.
36. Liu, Z., et al., Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater, 2015. 27(4): p. 669-675.
37. 陳嘉軒, 結合分子臨場吸附與電化學剝離法製備高品質石墨烯. 2016, National Central University.
38. Li, Y., et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nano, 2012. 7(6): p. 394-400.
39. Greczynski, G., T. Kugler, and W.R. Salaneck, Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 1999. 354(1–2): p. 129-135.
40. Wang, M., et al., Enhanced polymer solar cells efficiency by surface coating of the PEDOT: PSS with polar solvent. Solar Energy, 2016. 129: p. 175-183.
41. Ju, H., M. Kim, and J. Kim, Enhanced thermoelectric performance by alcoholic solvents effects in highly conductive benzenesulfonate-doped poly(3,4-ethylenedioxythiophene)/graphene composites. Journal of Applied Polymer Science, 2015. 132(24): p. 42107.
42. Luo, J., et al., Enhancement of the thermoelectric properties of PEDOT: PSS thin films by post-treatment. Journal of Materials Chemistry A, 2013. 1(26): p. 7576-7583.
43. Ouyang, J., et al., On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450.
44. Mengistie, D.A., et al., Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl Mater Interfaces, 2014. 6(4): p. 2292-2299.
45. Wu, X., et al., Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes. Journal of Materials Chemistry C, 2014. 2(20): p. 4044-4050.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明