博碩士論文 103323044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.217.18.163
姓名 胡惠欽(Hui-Chin Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以臭氧電漿活化表面強化異質晶圓鍵合之研究
(Improving wafer bonding of dissimilar materials by ozone plasma activated surface)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 晶圓鍵合技術的優勢,在於可以將不同元件在高品質接合介面下結合在一起,具有相當高的便利性與整合性。然而,不同材料之間存在熱膨脹係數差異,會在高溫下產生熱應力,造成晶圓分離,甚至發生破裂。本研究以矽晶片與砷化鎵晶片進行直接晶圓鍵合,探討如何減少熱應力對鍵合晶圓的影響。本實驗分為兩個部分:第一部分為探討電漿活化晶圓表面之差異,得到最佳電漿參數;第二部分為探討晶圓以對稱式鍵合與非對稱式鍵合之差異。實驗結果發現,晶圓經過電漿活化表面後,能有效提升鍵合能,並能在200℃成功鍵合。另外,對稱式晶圓鍵合能有效抵消熱應力,在加熱至350℃時,晶圓仍不會破裂。
摘要(英) Wafer Bonding Techniques has an advantage that can combine wafer with different materials with great bonding interface. It provides convenience and integration for high-tech industry. However, it will exist thermal expansion mismatch between different materials, great thermal stress may cause sample debond even crack after annealing. In this work, we developed wafer bonding techniques to bond Si and GaAs wafers. First, we use ultraviolet/ozone (UVO) plasma to modify the surface of wafers. Second, we compare the wafers in symmetrical bonded structure with asymmetric bonded structure. In result, wafers could bond together in 200℃ after surface activation. Besides, the wafers in symmetrical bonded structure could effectively counteract heat stress even heat to 350 ℃, and it is still not crack.
關鍵字(中) ★ 晶圓鍵合
★ 表面活化
★ 紫外光-臭氧
★ 氧氣電漿
關鍵字(英) ★ wafer bonding
★ surface activation
★ UV-ozone
★ oxygen plasma
論文目次 總目錄

摘要 ---------------------------------------------------------Ⅰ
致謝 ---------------------------------------------------------Ⅲ
總目錄 -------------------------------------------------------Ⅳ
圖目錄 -------------------------------------------------------Ⅶ
表目錄 -------------------------------------------------------Ⅸ

第一章 緒論 -------------------------------------------------1
  1-1前言 --------------------------------------------------1
  1-2研究動機 ----------------------------------------------2
第二章 文獻回顧 ---------------------------------------------3
  2-1晶圓鍵合技術簡介---------------------------------------3
  2-2晶圓鍵合機制 ------------------------------------------4
   2-2-1凡得瓦力 ------------------------------------------4
   2-2-2毛細作用 ------------------------------------------5
   2-2-3靜電力 --------------------------------------------5
  2-3影響晶圓鍵合因素 --------------------------------------6
2-4晶圓鍵合技術分類 --------------------------------------7
2-4-1 直接鍵合法 ---------------------------------------8
2-4-2 低溫鍵合法 ---------------------------------------10
2-4-3 中間介質層鍵合法----------------------------------12
2-4-4 陽極鍵合法 ---------------------------------------13
2-5晶圓鍵合技術應用 --------------------------------------13
   2-5-1絕緣層上矽晶圓基板 --------------------------------14
   2-5-2矽/砷化鎵 ----------------------------------------15
   2-5-3矽/石英 ------------------------------------------16
   2-5-4矽/玻璃 ------------------------------------------16
第三章 實驗方法及步驟 ---------------------------------------28
  3-1實驗架構 ----------------------------------------------28
3-2實驗試片製備 ------------------------------------------29
3-3實驗試片清洗 ------------------------------------------29
3-3-1矽晶片清洗流程 ------------------------------------30
3-3-2砷化鎵晶片清洗流程 --------------------------------31
3-4實驗試片初步接合 --------------------------------------32
3-5高溫退火 ----------------------------------------------32
3-5-1直接晶圓鍵合 --------------------------------------32
3-5-2電漿活化晶圓鍵合 ----------------------------------33
3-5-3非對稱式晶圓鍵合(Si/GaAs)------------------------33
3-5-4對稱式晶圓鍵合(Si/GaAs/Si)-----------------------34
第四章 結果與討論 -------------------------------------------41
4-1直接晶圓鍵合 ------------------------------------------41
4-2電漿活化晶圓鍵合 --------------------------------------41
4-3非對稱式晶圓鍵合 --------------------------------------42
4-4對稱式晶圓鍵合 ----------------------------------------43
第五章 結論 -------------------------------------------------49
參考文獻 -----------------------------------------------------51

圖目錄

圖2-1 凡得瓦力 ----------------------------------------------19
圖2-2 毛細作用 ----------------------------------------------19
圖2-3 靜電力 ------------------------------------------------19
圖2-4 晶圓表面附著粒子對鍵合介面的影響 ----------------------20
圖2-5 親水性與疏水性鍵合強度分布圖 --------------------------20
圖2-6 親水性鍵合示意圖 --------------------------------------21
圖2-7 疏水性鍵合示意圖 --------------------------------------22
圖2-8 真空鍵合與大氣鍵合之退火溫度與鍵合能分布圖 ------------23
圖2-9 陽極鍵合示意圖 ----------------------------------------23
圖2-10 SOI示意圖 -------------------------------------------24
圖2-11 ELTRAN示意圖 ----------------------------------------25
圖2-12 Smart Cut示意圖 -------------------------------------26
圖2-13 矽與砷化鎵之熱膨脹係數分布圖 -------------------------27
圖3-1 固定夾具 ----------------------------------------------39
圖3-2 非對稱式晶圓鍵合示意圖 --------------------------------40
圖3-3 對稱式晶圓鍵合示意圖 ----------------------------------40
圖4-1 電漿活化晶圓鍵合-矽/砷化鎵鍵合介面 -------------------44
圖4-2 非對稱結構於300℃產生破裂現象--------------------------44
圖4-3 鍵合晶圓中的三種熱應力形態與分佈圖 --------------------45
圖4-4 材料受正向應力破壞示意圖 ------------------------------46
圖4-5 材料受掀拉應力與剪應力破壞示意圖 ----------------------47
圖4-6 對稱式晶圓鍵合-矽/砷化鎵鍵合介面 ---------------------48

表目錄

表2-1 晶圓鍵合技術分類 --------------------------------------17
表2-2 RCA溶液成份功用表 ------------------------------------17
表2-3 材料性質比較表 ----------------------------------------18
表3-1 實驗設備 ----------------------------------------------35
表3-2 矽晶片清洗流程 ----------------------------------------36
表3-3 砷化鎵晶片清洗流程 ------------------------------------37
表3-4 紫外光-臭氧電漿參數-----------------------------------38
參考文獻 參考文獻
〔1〕 Q.-Y. Tong and U. Gösese,“Semiconductor Wafer Bonding:Science and Technology, John Wiley & Sons, Inc.pp.17-221, 1999.
〔2〕 T.A. Michalske and E.R. Fuller,“Closure and Repropagation of Healed Cracks in Silicate Glass”, J.Am.Ceram.Soc., 68, pp.586-590, November 1985.
〔3〕 L.R. Fisher and J.N. Israelachvili,“Direct measurement of the effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces”, Colloids Surf., 3, pp.303-319, December 1981.
〔4〕 K.-T. Wan, D, T. Amith, and B.R. Lawn,“Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres”, J.Am.Ceram.Soc., 75, pp.667-676, March 1992.
〔5〕 J. Haiama, G.A.C.M. Spierings,“Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry:Historical review in a broader scope and comparative outlook”, Materials science and engineering, R 37, pp.1-60, April 2002.
〔6〕 K-T. Wan, R.G. Horn, S. Courmont, and B.R. Lawn,“Pressurized internal lenticular cracks at healed mica interfaces”, J. Mater. Res., 8, pp.1128-1136, May 1993.
〔7〕 Q.-Y. Tong and U. Gösese,“Semiconductor wafer bonding: recent developments”, Mater. Chem. and phys., 37, pp.101-127, March 1994.
〔8〕 T. A. Michalske, and B. C. Bunker,“Slow fracture model based on strained silicate structures”, J. Appl. Phys. Lett., 56, pp.2686, June 1984.


〔9〕 M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, and E.E. Chaban,“Mechanistic studies of silicon wafer bonding and layer exfoliation”, Proceedings of 4th International Symposium on Semicondutor Wafer Bonding:Science and Technology and Application, The Electrochemical Society Pennington, NJ, pp.229-248,1998.
〔10〕 Eliezer M. Rabinovich, Denise M. Krol, Nonna A. Kopylov, Patrick K. Gallagher,“Retention of Fluorine in Silica Gels and Glass”, J.Am.Ceram.Soc., 72, pp.1229, 1989.
〔11〕 李天錫,林澤勝,彭成鑑,呂冠良,潘信宏,「晶圓鍵合技術及其應用」,工業材料雜誌,170期,146-157頁,民國90年2月。
〔12〕 T. Suni, K. Henttinen, I. Suni, and J. Makinen,“Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, J.Electrochem.Soc.,149, pp.G348-G351, June 2002.
〔13〕 Frank Shi, Hao Chen and Scott MacLaren,“Wafer-bonded semiconductors using In/Sn and Cu/Ti metallic interlayers”, Appl. Phys. Lett., 84, pp.3504-3506, May 2004.
〔14〕 H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng,“Low temperature wafer bonding by spin on glass”, J.Vac.Sci.technol. B, 20, pp.752-754, March 2002.
〔15〕 D. Cengher, Z. Hatzopoulos, S. Gallis, G. Deligeorgis, E. Aperathitis, M. Androulidaki, M. Alexe, V. Dragoi, E.D. Kyriakis-Bitzaros, G. Halkias, A. Georgakilas,“Fabrication of GaAs laser diodes on Si using low-temperature bonding of MBE-grown GaAs wafers with Si wafers”, journal of Crystal Growth, 251, pp.754-759, April 2003.
〔16〕 F. Niklaus, H. Andersson, P. Enoksson, G. Stemme,“Low temperature full wafer adhesive bonding of structured wafers”, Sensors and Actuators A:Physical, Vol.92, pp.235-241, August 2001.
〔17〕 Klas Hjort,“Transfer of InP epilayers by wafer bonding”, Journal of Crystal Growth, Vol.268, pp.346-358, August 2004.
〔18〕 F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins,“Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x )0.5In0.5P/GaP light‐emitting diodes”, Appl. Phys. Lett., 64, pp.2839-2841, May 1994.
〔19〕 S. Gautier, T. Moudakir, G. Patriarche, D.J. Rogers, V.E. Sandana, F. Hosseini Téherani, P. Bove, Y. El Gmili, K. Pantzas, Suresh Sundaram, D. Troadec, P.L. Voss, M. Razeghi, and A. Ougazzaden,“Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire”, Journal of Crystal Growth, Vol.370, pp.63-37, May 2013.
〔20〕 O. Kononchuk, B.-Y. Nguyen,“Silicon-On-Insulator (SOI) Technology, Manufacture and Applications”, Woodhead Publishing, pp.21-496, June 2014.
〔21〕 Hitoshi Habuka, Hitoshi Tsunoda, Masanori Mayusumi, Naoto Tate, and Masatake Katayama,“Roughness of Silicon Surface Heated in Hydrogen Ambient”, J. Electrochem. Soc., Vol. 142, No.9, pp.3092-3098, 1995.
〔22〕 M. Bruel,“Roughness of Silicon Surface Heated in Hydrogen Ambient”, Electron. Lett., Vol.31, pp.1201, July 1995.
〔23〕 S.-H. Kim, D.-M. Geum, M.-S. Park, C. Z. Kim, W. J. Choi,“GaAs solar cell on Si substrate with good ohmic GaAs/Si interface by direct wafer bonding”, Solar Energy Materials & Solar Cells, Vol.141, pp.372-376, October 2015.
〔24〕 F. Predan, D. Reinwand, V. Klinger, and F. Dimroth,“Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation”, Appl. Surf. Sci., Vol.117-118, pp.808-812, June 1997.
〔25〕 T.R. Chung, L. Yang, N. Hosoda, H. Takagi, T. Suga,“Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method”, Appl. Surf. Sci., Vol.117-118, pp.808-812, June 1997.
〔26〕 Q.-Y. Tong, U. Gösese, T. Martini, and M. Reiche,“Ultrathin single-crystalline silicon on quartz (SOQ) by 150℃ wafer bonding”, Sensor and Actuators, Vol.48, pp.117-123, May 1995.
〔27〕 A. Datta, S. Gangopadhyay, H. Temkin, Q. Pu, S. Liu,“Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect”, Talanta, Vol.68, pp.659-665, January 2006.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2016-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明