博碩士論文 103323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:44.200.122.214
姓名 汪昱呈(Yu-Cheng Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多功能崁入式金屬網格透明電極技術開發
(Development of Fabrication Technique for Multifunctional Embedded Metal-mesh Transparent Electrodes)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文研究以網印技術印製銀導線電極圖案,結合剝離技術(Lift-off)將所印製之電極圖案崁入至聚醯亞胺(Polyimide)基板內。由於網版印刷技術擁有快速、大面積、無需真空與製程簡單等優勢,可取代現階段耗時、耗能的真空鍍膜製程 。本文第一部分針對金屬網格透明基板之基本特性作探討,包括金屬網格設計、透光度與彎曲疲勞等特性。本文的第二部分於金屬網格透明基板上塗佈導電高分子 PEDOT:PSS作為修飾平坦層,以降低電極之表面粗糙度,同時,為了進一步增進透明電極之光電特性,在製備PEDOT:PSS溶液時中添加不同比例MoOx水溶液與銀奈米粒子,這些添加對元件特性的影響,則透過電洞注入元件(Hole-only device, HOD)作測試。本文的第三部分是將所開發的金 屬網格透明電極應用於有機發光二極體 (Organic light emitting diode, OLED)元件之製程,證明其可行性 。
摘要(英) This thesis aims at developing a fabricating technique for metal-mesh transparent electrodes. The approach includes the uses of the screen printing method for patterning metal mesh on a glass substrate and the lift-off method for embedding the printed mesh into a flexible polyimide substrate. As the screen printing is a fast and straightforward mass production method, it has the potential for replacing the current time and energy consuming vacuum coating process. The first part of this thesis discusses the basic characteristics of the fabricated metal mesh transparent substrate, including the metal mesh design, light transmission, bending life and other related characteristics. The second part is to coat the embedded mesh electrode with a layer of conductive polymer, PEDOT:PSS, as a modifying flat layer for reducing the surface roughness of the electrode. In order to further improve the photoelectric properties of the metal-mesh electrode, different proportions of MoOx and silver nanoparticles are blended with the PEDOT:PSS by mixing PEDOT:PSS solution with aqueous MoOx and silver nanoparticles solutions. The resulting effects are examined by characterizing a Hole-only device (HOD). By employing the developed metal mesh electrode as the anode of an organic light emitting diode (OLED), the third part of this thesis discusses its feasibility.
關鍵字(中) ★ 網版印刷
★ 崁入式金屬網格電極
★ 有機發光二極體
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xi
Chapter 1 緒論 1
1-1 前言 1
1-2 研究背景、目的與方法 2
Chapter 2 文獻回顧 3
2-1 金屬真空鍍膜圖案化製程 3
2-2 凸版印刷 5
2-3 凹版印刷 7
2-4 噴墨印刷 7
2-5 網版印刷 9
2-6 奈米金屬線崁入式電極 10
2-7 金屬網格崁入式電極 13
2-8 導電高分子PEDOT:PSS 19
2-9 金屬氧化物MoO3 22
2-10 金屬奈米粒子 27
2-11 傳承與創新 29
Chapter 3 實驗流程與架構 30
3-1 實驗用品 30
3-2 實驗設計與目標 33
3-3 鋼絲網版設計 34
3-4 崁入式金屬網格透明電極製作流程 36
3-5 崁入式金屬網格透明基板性質量測流程 38
3-6 電洞注入元件(Hole only device)製作流程 40
3-7 有機發光二極體(OLED)製作流程 44
Chapter 4 實驗結果與討論 46
4-1 崁入式金屬網格基板性質量測結果 46
4-1-1 光學顯微鏡檢測結果 46
4-1-2 表面輪廓量測結果 46
4-1-3 電性量測結果 52
4-1-4 透光度量測結果 54
4-1-5 彎曲量測結果 57
4-2 電洞注入元件性質量測 58
4-2-1 MoOx溶液配製 58
4-2-2 HOD元件結構 58
4-2-3 電流電壓特性曲線 59
4-2-4 UPS量測結果 60
4-2-5 Ag奈米粒子配置 61
4-2-6 Ag奈米粒子其性質檢測 61
4-2-7 HOD元件結構 64
4-2-8 電流電壓特性曲線 65
4-3 有機發光二極體元件性質量測結果 66
4-3-1 OLED電壓電流曲線 66
4-3-2 薄膜成形缺陷成因探討 68
Chapter 5 結論與未來工作 70
參考文獻 71
附錄一 彎曲測試結果整理 75
附錄二 UPS量測結果整理 78
附錄三 銀奈米粒子EDS量測 82
口試委員問題與回覆 83
口試委員針對論文之建議 85
參考文獻


[1] D.S. Ghosh, T.L. Chen and V. Pruneri, "High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid," Applied Physics Letters 96.4, 2010.
[2] J. Zou, H.L. Yip, S.K. Hau and A.K.Y. Jen, "Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells," Applied Physics Letters 96.20, 2010.
[3] Y.H. Ho, K.Y. Chen, S.W. Liu, Y.T. Chang, D.W. Huang and P.K. Wei, "Transparent and conductive metallic electrodes fabricated by using nanosphere lithography," Organic Electronics 12.6, 2011.
[4] D. Beynon and B. Unitt, "Volume R2R Production of Conductivity Enhancing Features for Photonics Applications," Large-area Organic & Printed electronics Convention, 2012.
[5] M.G. Kanga, H.J. Park, S.H. Ahn and L.J. Guo, "Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells," Solar Energy Materials and Solar Cells 94.6, 2010.
[6] S. Kim and H.J. Sung, "Effect of nanostructured surfaces on conductive ink printing," Large-area Organic & Printed electronics Convention, 2012.
[7] H.H. Lee, K.S. Chou and K.C. Huang, "Inkjet printing of nanosized silver colloids," Nanotechnology 16.10, 2005.
[8] J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang and J.W. Joung, "Inkjet printed electronics using copper nanoparticle ink," Journal of Materials Science: Materials in Electronics 21.11, 2010.
[9] A. Eshkeiti, A.S.G. Reddy, S. Emamian, B.B. Narakathu, M. Joyce, M. Joyce, P.D. Fleming, B.J. Bazuin and M.Z. Atashbar, "Screen printing of multilayered hybrid printed circuit boards on different substrates," IEEE Transactions on Components, Packaging and Manufacturing Technology 5.3, 2015.
[10] J.Y. Lee, S.T. Connor, Y. Cui and P. Peumans, "Semitransparent organic photovoltaic cells with laminated top electrode," Nano letters 10.4, 2010.
[11] S. Nam, M. Song, D.H. Kim, B. Cho, H.M. Lee, J.D. Kwon, S.G. Park, K.S. Nam, Y. Jeong, S.H. Kwon, Y.C. Park, S.H Jin, J.W. Kang, S. Jo and C.S. Kim, "Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode," Scientific reports 4, 2014.
[12] K.H. Ok, J. Kim, S.R. Park, Y. Kim, C.J. Lee, S.J. Hong, M.G. Kwak, N. Kim, C.J. Han and J.W. Kim, "Ultra-thin and smooth transparent electrode for flexible and leakage -free organic light-emitting diodes," Scientific reports 5, 2015.
[13] Y.D. Suh, S. Hong, J. Lee, H. Lee, S. Jung, J. Kwon, H. Moon, P. Won, J. Shin, J. Yeo and S.H. Ko, "Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor," RSC Advances 6.62, 2016.
[14] Y. Galagana, J.E.J.M. Rubingha and R. Andriessena "ITO-free flexible organic solar cells with printed current collecting grids," Solar Energy Materials and Solar Cells 95.5, 2011.
[15] L. Zhou, H.Y. Xiang, S. Shen, Y. Q. Li, J.D. Chen, H.J. Xie, I.A. Goldthorpe, L. S. Chen, S.T. Lee and J.X. Tang, "High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes," American Chemical Society nano 8.12, 2014.
[16] G. Kim, J.H Shin, H.J Choi and H. Lee, "Fabrication of transparent and flexible Ag three-dimensional mesh electrode by thermal roll-to-roll imprint lithography," Journal of nanoparticle research 16.9, 2014.
[17] H.J. Choi, S. Choo, P.H. Jung, J.H. Shin, Y. Kim and H. Lee, "Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode," Nanotechnology
26.5,2015
[18] W. Morita, T. Hara, T. Muto and T. Kondo, "All in one PE substrate: Highly conducting plastic substrate with surface flatness and gas barrier properties," CPMT Symposium Japan, 2015.
[19] S. Harkema, S. Mennema, M. Barink, H. Rooms, J.S. Wilson, T.V. Mol and D. Bollen, "Large area ITO-free flexible white OLEDs with Orgacon PEDOT: PSS and printed metal shunting line," Proc SPIE 7415, 2009.
[20] S. Choi, S.J. Kim, C. Fuentes-Hernandez and B. Kippelen, "ITO-free large-area organic light-emitting diodes with an integrated metal grid," Optics express 19.104, 2011.
[21] A. Singh, M. Katiyar and A. Garg, "Understanding the formation of PEDOT: PSS films by ink-jet printing for organic solar cell applications," RSC Advances 5.96, 2015.
[22] F. Jiang, T. Liu, S. Zeng, Q. Zhao, X. Min, Z. Li, J. Tong, W. Meng, S. Xiong and Y. Zhou, "Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode," Optics express 23.3, 2015.
[23] F. Liu, S.Shao, X. Guo, Y. Zhao and Z. Xie, "Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer." Solar Energy Materials and Solar Cells 94.5, 2010.
[24] I. Irfan, A.J. Turinske, Z. Bao and Y. Gao, "Work function recovery of air exposed molybdenum oxide thin films," Applied Physics Letters 101.9, 2012.
[25] S. Murase and Y. Yang, "Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method," Advanced Materials 24.18, 2012.
[26] F. Hou, Z. Su and F. Jin, "Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer," Nanoscale 7.21, 2015.
[27] J.H. Chang, K.M. Chiang, H.W. Kang, W.J. Chi, J.H. Chang, C.L. Wu and H.W. Lin, "A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties," Nanoscale 7.10, 2015.
[28] 謝耀州,“圖案化銀透明導電膜於有機光電元件之應用”,國立中正大學,碩士論文,2013。
[29] 田大昌,陳俊榮,謝孟婷等人,“光電子能階分析在奈米有機半導體上之應用”,工業材料雜誌,251期,99-106,2007。
[30] H. Ishii, K. Sugiyama, E. Ito and K. Seki, "Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces," Advanced materials 11.8, 1999.
[31] Y. Park, V. Choong, Y. Gao, B. R. Hsieh and C. W. Tang, "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy," Applied Physics Letters 68.19, 1996.
[32] R. Schlaf, H. Murata and Z.H. Kafafi, "Work function measurements on indium tin oxide films," Journal of Electron Spectroscopy and Related Phenomena 120.1, 2001.
[33] 陳金鑫,黃孝文,“OLED:Materials and Devices of Dream Displays夢幻顯示器:OLED材料與元件”,初版,五南圖書,台北市,2007。
[34] M.F. Xu, L.S. Cui and X.Z. Zhu, "Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells," Organic Electronics 14.2, 2013.
[35] F.C. Chen, J.L. Wu, C.L. Lee, Y. Hong, C.H. Kuo and M.H. Huang, "Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles," Applied Physics Letters 95.1, 2009.
[36] S.S. Kim, S.I. Na, J. Jo, D.Y. Kim and Y.C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Applied Physics Letters 93.7, 2008.
[37] 洪玉娟,“金屬奈米粒子製作緩衝層應用於有機薄膜電晶體元件特性探討”,國立中正大學,碩士論文,2012。
[38] J. Li and N. Wu, “Biosensors Based on Nanomaterials and Nanodevices,” CRC Press, 2013.
[39] C.H. Chuang, B.H. Chang, J.M. Chen, D.M. Lu, W. Huang, "Metal-mesh based transparent electrodes using roll-to-sheet ultraviolet soft imprinting," Micro & Nano Letters 11.10, 2016.
[40] W. Kim, S. Kim, I. Kang, M. S. Jung, S. J. Kim, J. K. Kim, S. M. Cho, J.H. Kim, J. H. Park, "Hybrid silver mesh electrode for ITO-free flexible polymer solar cells with good mechanical stability," ChemSusChem 9.9, 2016.
[41] Y. Liu, S. Shen, L. Chen, Y. Zhou, Y. Ye, Y. Wang, W. Qiao, W. Huang, "High performance transparent film heater with an embedded Ni metal mesh based on selected metal electrodeposition process," International Society for Optics and Photonics, 2016.
[42] A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang, J. Tang, L.J. Guo, W.D. Li, "High performance flexible transparent electrode with an embedded metal mesh fabricated by cost‐effective solution process," Small 12.22, 2016.
[43] H.T. Vu, Y.K. Su, R.K. Chiang, C.Y. Huang, C.J. Chen, H.C. Yu, "Solution processable MoOx for efficient light emitting diodes based on giant quantum dots," IEEE Photonics Technology Letters 28.20, 2016.
[44] C. Xu, P. Cai, X. Zhang, Z. Zhang, X. Xue, J. Xiong, J. Zhang, "A wide temperature tolerance, solution-processed MoO x interface layer for efficient and stable organic solar cells," Solar Energy Materials and Solar Cells 159, 2017.
[45] J. Li, Q. Guo, H. Jin, K. Wang, D. Xu, G. Xu, X. Xu, "Low temperature solution processed MoOx as hole injection layer for efficient quantum dot light-emitting diodes," RSC Advances 7.44, 2017.
指導教授 何正榮 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明