博碩士論文 103323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:34.229.126.29
姓名 林信安(Shing-An Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
(Analysis on the thermal properties of asymmetric porous silicon using phonon Boltzmann equation)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多孔材料在工程上一直具有相當重要的應用,其中低熱傳導係數特性使其應用在許多絕熱的情形,例如作為CMOS絕緣層的多孔矽。隨著微奈米技術的發展,也相繼提出多孔矽材料的新興應用,如低維度熱電材料、熱整流等,然而在孔洞間距過小時,此時熱傳輸的過程因受到尺寸效應及量子效應影響而不再符合巨觀熱傳導理論,當特徵長度小於熱載子的平均自由路徑時,此時是以彈道傳輸的方式而非巨觀的擴散傳輸。微觀熱傳理論透過將熱載子視為粒子,在固體中以聲子散射來討論微觀熱傳,可利用波茲曼方程式來描述聲子運動行為。
本文使用聲子波茲曼方程式來分析微觀尺度下的熱傳行為,以有限元素法與離散座標法來求解,探討多孔矽的熱傳現象。首先以二維薄膜與單位孔洞的模型與文獻結果作驗證,而因孔洞結構與塊材之間存在一過渡區域,其為受孔洞結構影響的區域,分析得到在不同結構厚度、塊材長度及材料參數下,皆不影響此過渡區長度。接著以對稱孔洞模型與多孔理論模型比較,並分析整齊排列與交錯排列的差異,與理論模型結果比較得到熱傳導係數的誤差小於20 %且隨著孔隙率變化具有相似的趨勢。
最後探討非對稱多孔矽之熱傳性質,分析在孔隙率與孔徑相同的條件下,以不同間距的疏密排列形成非對稱的結構,發現在疏密程度增加時,熱傳導係數會降低,此時理論模型已無法適用。由其熱傳率分布可發現,當孔與孔的間隔小於50 nm時,聲子散射的路徑會受到鄰近孔洞的影響,造成較低的區域熱通量,使熱傳導係數降低。研究發現利用等效熱阻串聯的方式來計算非對稱多孔結構之熱傳導係數在非對稱性小的結構是適用的,但當呈現較大的非對稱性時將不適用。
摘要(英) Porous silicon has tremendous applications in different engineering fields, especially its low thermal conductivity property which can be used as insulated materials. Besides, such low thermal conductivity also has potential applications in thermoelectric materials and thermal rectification. When it comes to small size scale, that is, when the characteristic length is smaller than the mean free path of the heat carrier, the description of conventional heat conduction is no longer applied due to the size effects and the quantum effects. Heat conduction in solids can be considered as the propagation of quantized energy due to lattice vibration called phonons. The transport behavior of phonons can be described using the Boltzmann Transport equation.

In our study, the phonon Boltzmann transport equation is solved using Finite Element Method and Discrete Ordinates Method to simulate the thermal behavior of nano porous silicon films. First, we study the two dimensional thin film and unit cell structure of silicon and discover a transition zone between the porous structure and the bulk material where the heat transport is affected by the pores. The numerical results show that the length of transition zone is independent of porous structure length and bulk material length. Then, we consider symmetric porous silicon with aligned and staggered pores. The simulated thermal conductivities are compared with the results from theoretical models for different porosities. The deviations are less than 20% .

Finally, we discuss the thermal properties of asymmetric porous silicon with different porous density distributions. Consider that the porosity and pore diameter are constants, the numerical results show that as the porous density increases, the thermal conductivity will decline. As the separation between pores becomes smaller than 50 nm, pores will have increasingly impact on the propagation of phonon scattering. Using the thermal circuit concept, the thermal conductivities of asymmetric porous materials can be modeled by thermal resistance in series connection, but the results will have large deviation for large asymmetric cases.
關鍵字(中) ★ 波茲曼方程式
★ 多孔矽
★ 聲子
關鍵字(英) ★ Boltzmann Transport Equation
★ Porous Silicon
★ Phonon
論文目次 中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
符號說明 ix
一、緒論 1
1.1 引言 1
1.2 文獻回顧 3
1.3 研究動機與目的 6
1.4 研究內容及架構 6
二、聲子輻射傳輸理論 8
2.1 理論背景 8
2.2.1 微觀熱傳理論 8
2.2.2 聲子平均自由路徑 11
2.2.3 聲子散射 11
2.2.4 古典尺寸效應 13
2.2 波茲曼傳輸方程式 14
2.3 聲子輻射熱傳輸方程式 15
2.4 邊界條件 18
2.5 二維薄膜熱傳分析 20
2.6 二維薄膜孔洞結構熱傳分析 21
2.7 多孔材料理論模型 21
三、 數值分析方法 24
3.1 有限元素法 24
3.2 離散座標法 27
3.3 射線效應 28
3.4 模擬假設與參數 29
3.5 網格分割 30
3.6 數值求解流程圖 31
四、 結果與討論 32
4.1 二維定溫邊界聲子輻射熱傳輸 32
4.2 二維薄膜模型 35
4.2.1 薄膜厚度對溫度分布的影響 36
4.2.2 薄膜厚度與熱傳導係數 36
4.3 二維薄膜孔洞模型 37
4.4 數值收斂 38
4.4.1 空間角度離散收斂 39
4.4.2 空間網格離散收斂 40
4.5 定溫邊界過渡區 43
4.5.1 固定孔洞結構厚度 43
4.5.2 固定塊材長度 47
4.5.3 不同材料緩衝區長度 49
4.6 對稱多孔薄膜 50
4.7 非對稱多孔薄膜 56
五、結論與未來工作 65
參考文獻 67
附錄一 70
參考文獻 G. Chen, "Nanoscale energy transport and conversion," ed: Oxford University Press, New York, 2005.
[2] M. Criado-Sancho, F. X. Alvarez, and D. Jou, "Thermal rectification in inhomogeneous nanoporous Si devices," Journal of Applied Physics, vol. 114, p. 053512, 2013.
[3] F. A. Harraz, "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, vol. 202, pp. 897-912, 2014.
[4] D. Yao, Y. Xia, K.-h. Zuo, Y.-P. Zeng, D. Jiang, J. Günster, et al., "Gradient porous silicon nitride prepared via vacuum foaming and freeze drying," Materials Letters, vol. 141, pp. 138-140, 2015.
[5] J. C. Maxwell, "On the Dynamical Theory of Gases," Philosophical Transactions of the Royal Society of London, vol. 157, pp. 49-88, 1867.
[6] T. Klitsner, J. E. VanCleve, H. E. Fischer, and R. O. Pohl, "Phonon radiative heat transfer and surface scattering," Physical Review B, vol. 38, pp. 7576-7594, 1988.
[7] M. I. Flik and C. L. Tien, "Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors," Journal of Heat Transfer, vol. 112, pp. 872-881, 1990.
[8] M. I. Flik, B. I. Choi, and K. E. Goodson, "Heat Transfer Regimes in Microstructures," Journal of Heat Transfer, vol. 114, pp. 666-674, 1992.
[9] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 1993.
[10] A. Majumdar, "Microscale Heat Conduction in Dielectric Thin Films," Journal of Heat Transfer, vol. 115, pp. 7-16, 1993.
[11] G. Chen, C. L. Tien, X. Wu, and J. S. Smith, "Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures," Journal of Heat Transfer, vol. 116, pp. 325-331, 1994.
[12] G. Chen, "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices," Physical Review B, vol. 57, pp. 14958-14973, 1998.
[13] Y. S. Ju and K. E. Goodson, "Phonon scattering in silicon films with thickness of order 100 nm," Applied Physics Letters, vol. 74, pp. 3005-3007, 1999.
[14] D. Song and G. Chen, "Thermal conductivity of periodic microporous silicon films," Applied Physics Letters, vol. 84, pp. 687-689, 2004.
[15] K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, "Heat conduction in microstructured materials," Components and Packaging Technologies, IEEE Transactions on, vol. 29, pp. 247-253, 2006.
[16] M.-S. Jeng, R. Yang, D. Song, and G. Chen, "Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation," Journal of Heat Transfer, vol. 130, pp. 042410-042410, 2008.
[17] F. X. Alvarez, D. Jou, and A. Sellitto, "Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach," Applied Physics Letters, vol. 97, p. 033103, 2010.
[18] R. H. Tarkhanyan and D. G. Niarchos, "Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity," International Journal of Thermal Sciences, vol. 67, pp. 107-112, 2013.
[19] G. H. Tang, C. Bi, and B. Fu, "Thermal conduction in nano-porous silicon thin film," Journal of Applied Physics, vol. 114, p. 184302, 2013.
[20] H. Machrafi and G. Lebon, "Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix," Physics Letters A, vol. 379, pp. 968-973, 2015.
[21] A. Mittal, "Prediction of Non-Equilibrium Heat Conduction in Crystalline Materials Using the Boltzmann Transport Equation for Phonons," The Ohio State University, 2011.
[22] G. Chen, "Phonon heat conduction in nanostructures," International Journal of Thermal Sciences, vol. 39, pp. 471-480, 2000.
[23] J. Y. Murthy, S. V. J. Narumanchi, J. A. Pascual-Gutierrez, T. Wang, C. Ni, and S. R. Mathur, "Review of Multiscale Simulation in Submicron Heat Transfer," vol. 3, pp. 5-32, 2005.
[24] C. Kittel, Introduction to solid state physics: Wiley, 2005.
[25] A. Joshi and A. Majumdar, "Transient ballistic and diffusive phonon heat transport in thin films," Journal of Applied Physics, vol. 74, pp. 31-39, 1993.
[26] B. Yang and G. Chen, "Partially coherent phonon heat conduction in superlattices," Physical Review B, vol. 67, p. 195311, 2003.
[27] "The Finite Element Method," in The Finite Element Method (Second Edition), G. R. Liu and S. S. Quek, Eds. Oxford: Butterworth-Heinemann, 2014.
[28] S. Hamian, T. Yamada, M. Faghri, and K. Park, "Finite element analysis of transient ballistic–diffusive phonon heat transport in two-dimensional domains," International Journal of Heat and Mass Transfer, vol. 80, pp. 781-788, 2015.
[29] M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, "Phonon-boundary scattering in thin silicon layers," Applied Physics Letters, vol. 71, pp. 1798-1800, 1997.
[30] L.-C. Liu and M.-J. Huang, "Thermal conductivity modeling of micro- and nanoporous silicon," International Journal of Thermal Sciences, vol. 49, pp. 1547-1554, 2010.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2015-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明